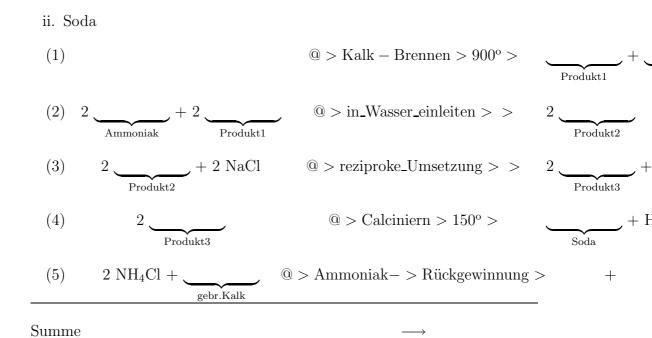
Aufgabe	1	2	3	4	5	6	7	8	9	10
Punkte (je 10)										

Zwischenprüfung Lehramt Chemie Teilprüfung 'Anorganische Chemie'

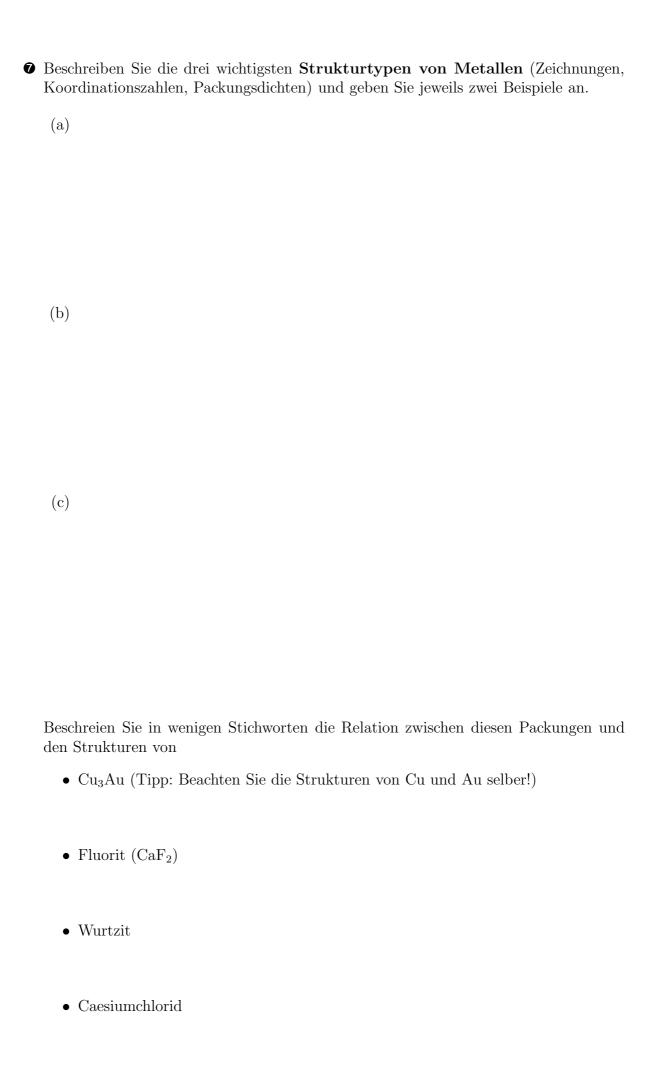

19.2.2010

Name:	Vorname:	Matrikel-Nr
ausreichen	erwenden Sie für die Antworten den hinter den Fragen is sollte, benutzen Sie die angehefteten Blätter und mach die Seite, auf der die Lösung zu finden ist.	
	chreiben Sie die folgenden Regeln/Konzepte <u>u</u> Beispiel für ihre/seine Anwendung.	nd nennen Sie jeweils ein konkre-
(a)	8-N-Regel	
(b)	VSEPR-Konzept	
(c)	18-Elektronen-Regel	
(d)	Phasenregel	
(e)	Hund'sche Regel	

er der allgemeinen Bezeichung ' NOX ' (NO_x) verbergen sich mehrere unterschiede Verbindungen.
Nennen Sie diese Moleküle und zeichnen Sie die zugehörigen Valenzstrichformeln (inkl. Angaben zum Aufbau/Bindungswinkeln).
Einige NOX-Spezies werden technisch in großen Mengen hergestellt. Beschreiben Sie (mit Reaktionsgleichungen und Stichworten zu den Reaktionsbedingungen) den entsprechenden vollständigen Darstellungsprozess sowie die Umsetzung zum Endprodukt Salpetersäure.
Geben Sie (mit Skizze des Moleküls) ein Beispiel für eine Verbindung aus der entsprechenden Reihe $\mathrm{PO}_{\mathrm{x}}.$

•	Hochgeglühtes Chromoxid (Cr_2O_3) kann mit verschiedenen Verfahren aufgeschlos sen werden. Formulieren Sie (stöchiometrisch genau) die charakteristischen Reaktionen beim
	(a) sauren Aufschluß
	(b) oxidativen Aufschluß
	(c) alkalischen Aufschluß
	von Chromoxid.
	Chromoxid und Bleichromat werden als Farbpigmente eingesetzt. Nennen und begründen Sie (in Stichworten) die Farbe dieser beiden Oxide.
	(a) Chromoxid
	(b) Bleichromat

- 4 Natronlauge und Soda sind die wichtigsten technischen Basen.
 - (a) Beschreiben Sie (mit Reaktionsgleichungen und Skizzen der Apparate) die technische Herstellung dieser beiden Basen.
 - i. Natronlauge



(b) Nennen Sie die wichtigsten Einsatzbereiche der beiden Basen.

(c) Was versteht man in der analytischen Chemie unter einem 'Soda'-Auszug. Geben Sie zwei verschiedene charakteristische Reaktionsgleichungen für die ablaufenden Prozesse an.

0	Carbonyl-Komplexe sind eine sehr umfangreiche Verbindungsklasse.				
	(a)	Nennen Sie die Zusammensetzungen und den Aufbau der jeweils einfachsten bekannten Carbonylverbindungen der $3d$ -Übergangsmetalle.			
	(b)	Welche speziellen Eigenschaften des Carbonyl-Liganden sind für die Stabilität dieser Komplexe wichtig.			
	(c)	Nennen und begründen Sie die Zusammensetzung und den Aufbau eines zweikernigen Carbonylkomplexes Ihrer Wahl.			
	(d)	In Carbonylkomplexen kann der CO-Ligand durch Phosphan ersetzt werden. Welche Isomere erwarten Sie für die einfachste Eisen-Verbindung, wenn jeweils zwei der CO-Liganden durch $\rm PH_3$ ersetzt werden.			

6	Volumetrische Bestimmungsmethoden (Titrationen) sind wichtige quantitativ analytische Verfahren.				
	(a) Nennen Sie in Stichworten die prinzipiellen Vor- und Nachteil dieser Verfahren gegenüber der Gravimetrie.				
	(b) Beschreiben Sie (mit Reaktionsgleichungen und Vorgehensweise)				
	i. die Iodometrische Bestimmung von Permanganat.				
	ii. eine Fällungstitration zur Bestimmung von Chlorid.				
	iii. eine komplexometrische Bestimmung von Calcium.				

3	Geben Sie für die untengenannten Ionen jeweils <u>zwei</u> unterschiedliche qualitative Nachweise (einen ohne und einen mit einer Redoxreaktion) an (Stöchiometrie <u>nicht</u> erforderlich!).
	(a) O_2^{2-}
	• mit Redox:
	• ohne Redox:
	(b) Mn^{2+}
	• mit Redox:
	• ohne Redox:
	(c) Hg^{2+}
	• mit Redox:
	• ohne Redox:
	(d) AsO_3^{3-}
	• mit Redox:
	• ohne Redox:
	(e) Br [−] • mit Redox:
	• ohne Redox:

9	Bei binären Wasserstoffverbindungen der Elemente findet man Beispiele für alle drei chemischen Bindungsarten . Nennen Sie je zwei Beispiele, charakterisieren Sie kurz den Bindungstyp und beschreiben Sie die Konsequenzen für die physikalischen und chemischen Eigenschaften der genannnten Verbindungen.
	(a) ionische Bindung
	(b) kovalente Bindung
	(c) metallische Bindung
	Welche praktische Bedeutung haben metallische Wasserstoffverbindungen?

0	Von den folgenden Substanzen werden einzeln jeweils etwa 1 g in etwa 100 ml Wasser von 20°C gegeben. Formulieren Sie die Gleichungen für die ablaufenden Reaktionen (stöchiometrisch exakt) und geben Sie an, ob die entstehenden Lösungen sauer (pH < 5), alkalisch (pH > 9) oder annähernd neutral reagieren.					
	(a) 1	$ m K_2CO_3$				
	(b) 1	Kalium-Natrium-Legierung				
	(c) 1	KH				
	(d) I	Kaliumazid				
	(e)	Kaliumdihydrogenphosphat				
	(f)	Si				
	(g)	SiCl_4				
	(h)	$ m Ba_2Si$				
	(i) I	$\mathrm{Fe_{3}Si}$				
	(j) ;	$ m Si_3N_4$				