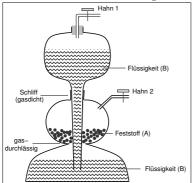
Aufgabe	1	2	3	4	5	6	7	8	9	10
Punkte (je 10)										

Zwischenprüfung Lehramt Chemie Teilprüfung 'Anorganische Chemie'


26.7.2007

Name:	Vorname:	Matrikel-Nr.	
	die angehefteten Blätter und machen	Fragen freigelassenen Raum. Falls dieser nicht ausreic Sie bei der jeweiligen Frage einen Verweis auf die Se	
diese Metal lität aus de	lionen die Oxidationsstufen an	in typischen Oxidationsstufen . Geben Sie und begründen Sie stichwortartig deren Sta riodensystem bzw. der Elektronenkonfiguration Farbe der Verbindung.	bi
(a) Auripi • O?	gment (As_2S_3) S?		
• Fa	rbigkeit?		
(b) Magne • O9	tit (Fe ₃ O ₄) S?		
• Fa	rbigkeit?		
(c) Thorty • OS	veitit $(Sc_2Si_2O_7)$ S?		
• Fa	${ m rbigkeit} ?$		
(d) Azurit • OS	$(Cu_3(OH)_2(CO_3)_2)$ S?		
• Fa	rbigkeit?		

2	Formulieren Sie (stöchiometrisch genau) die Reaktionen beim Ablauf der genannten technischen Prozesse . Schreiben Sie unter die jeweiligen Reaktionspartner, ob es sich bei ihner um eine Säure, eine Base (evtl. Lewis-Säure, Lewis-Base), ein Oxidations- oder ein Reduktionsmittel handelt.						
	(a) Herstellung von Wasserstoff (Kohlevergasung).						
	(b) Herstellung von Halbleitersilicium aus Quarz.						
	(c) Herstellung von Natronlauge nach dem Amalgamverfahren.						
	(d) Herstellung von hochreiner Phosphorsäure (z.B. für Lebensmittel).						
	(e) Aluminothermische Herstellung von Mangan aus Braunstein.						

•	20°C Reak	den folgenden Verbindungen werden einzeln jeweils etwa 1 g in etwa 100 ml Wasser von gegeben. Formulieren Sie (stöchiometrisch genau) die Gleichungen für die ablaufenden tionen (Reaktionszeit < 24 Stunden!) und geben Sie an, ob die entstehenden Lösungen r (pH $<$ 5), alkalisch (pH $>$ 9) oder annähernd neutral reagieren.
	(a)	$\mathrm{NaBH_{4}}$
	(b)	Ba
	(c)	${ m BaO}_2$
	(d)	${ m TiCl_4}$
	(e)	CaC_2
	(f)	Kaliumdihydrogenphosphat
	(g)	Kaliumphosphid
	(h)	Kaliumphosphit
	(i)	${\bf Kaliumhexacyanoferrat(III)}$
	(j)	Kalifeldspat

- 4 Die Darstellung von Gasen im Labor durch Einwirkung von Flüssigkeiten auf feste Stoffe kann mit dem sogenannten Kippschen Apparat (s. Abb.) erfolgen.
 - (a) Beschreiben Sie in wenigen Stichworten die Funktionsweise eines Kippschen Apparates.

- (b) Geben Sie die Gleichungen der Reaktionen an, die zur Erzeugung der folgenden Gase im 'Kipp' verwendet werden kann:
 - Kohlendioxid
 - Chlor
 - Ammoniak
 - Schwefelwasserstoff
- (c) Geben Sie die Gleichungen der Reaktionen an, die zur Vernichtung dieser Gase verwendet werden können:
 - Kohlendioxid
 - Chlor
 - Ammoniak
 - Schwefelwasserstoff

6	(a)	Welche Isomere treten bei einer Verbindung mit der Zusammensetzung $\mathrm{PdCl}_2 \cdot 2\mathrm{NH}_3$ auf?
	(b)	Welche Voraussetzungen müssen erfüllt sein, damit eine Verbindung optische Isomerie zeigt?
	(c)	Nennen Sie drei Liganden, die zum Auftreten von Bindungsisomeren führen.
	(d)	Was versteht man unter dem Chelateffekt bei der Komplexometrie? Nennen Sie zwei entsprechende Liganden. Begründen sie den Effekt auf der Basis thermodynamischer und kinetischer Argumente.

0		einem basischen (alkalischen; Soda-Pottasche) Aufschluß lassen sich viel schwerlösliStoffe in Lösung bringen.
	(a)	Formulieren Sie (stöchiometrisch genau) die Reaktionsgleichungen für den Aufschluß von:
		• SiO_2 (Quarz)
		• AgBr
		\bullet PbSO ₄
	(b)	Alle drei Substanzen lassen sich auch auf alternativem Weg in Lösung bringen. Formulieren Sie auch hier die stöchiometrischen Reaktionsgleichungen: • SiO ₂ (Quarz)
		• 510 ₂ (Quarz)
		• AgBr
		• $PbSO_4$
	(c)	Skizzieren Sie (nur schematisch!) das T-x-Phasendiagramm der Soda-Pottasche-Schmelze und erläutern Sie hieran in Stichworten die Phasenregel.

Bei Verbindungen des Stickstoffs können alle Oxidationsstufen im Bereich von -III bis $+V$ beobachtet werden.
 (a) Geben Sie für jede Oxidationsstufe ein charakteristisches Beispiel mit vollständiger Valenzstrichformeln und Angaben zum räumlichen Bau (idealisierte Bindungswinkel) an. -III
• -II
• -I
• 0
• +I
• +II
• +III
 +IV +V

(b) Stickstoffmonoxid ist eines der wenigen relativ stabilen Radikale. Erläutern Sie anhand eines Molekülorbitalschemas, warum die Stickstoff-Sauerstoff-Bindungslänge mit 114 pm deutlich größer ist als im Nitrosyl-Kation (106 pm).

0	Polymorphe Stoffe treten in verschiedenen Modifikationen auf, die sich gravierend in ihren Eigenschaften unterscheiden können. Beispiele hierfür sind elementarer Schwefel und Zinksulfid .					
	(a)	Beschreiben Sie die Strukturen der wichtigsten Modifikationen von Schwefel und Zinksulfid.				
	(b)	Welche besonderen physikalischen Eigenschaften weisen die verschiedenen Formen von Schwefel auf?				
	(c)	Geben Sie, stöchiometrisch genau, die Reaktionsgleichungen für die technische Gewinnung von Schwefelsäure aus den beiden Stoffen an.				

0	Beschreiben Sie die folgenden Begriffe und nennen Sie jeweils konkrete Beispi	ele.
	(a) Doppelbindungsregel	
	(b) Ideales Gasgesetz	
	(c) 18-Elektronen-Regel	
	(*)	
	(d) Lambert-Beersches Gesetz	
	(e) Hundsche Regel	
	(c) Hundsene Heger	

0	Formuliere die	n Sie für die nachstehend genannten Elemente/Ionen je eine Nachweisreaktion ,
	• mit de (a) K	er Entstehung charakteristisch geformter Kristalle einhergeht.
	(b) C	'a
	(c) N	a
	(d) P	b
	• mit de (a) Z	er Entstehung einer farbigen Verbindung einhergeht. n
	(b) F	e
	(c) C	r
	(d) T	'i
	• mit de (a) S	er Entstehung eines Gases mit charakteristischem Geruch einhergeht. ${\rm O}_3^{2-}$
	(b) C	N ⁻ * * nur theoretisch!!! sonst → letzte Frage