Spektroskopie der Elektronenhülle XPS/(AR)UPS, AES, EPMA (WDX, EDX), (HR)EELS, [RFA, XANES], ...

Vorlesung: Methoden der Festkörperchemie, WS 2018/2019, C. Röhr

Wiederholung Spektroskopie, Einordnung der Methoden Spektroskopie der Elektronenhülle: Übersicht

Rumpfniveau-Spektroskopie

Übersicht

- ① XPS: Röntgen-Photoelektronen-Spektroskopie
- ② AES: Auger-Elektronen-Spektroskopie
- ③ EPMA (WDX, EDX) (→ A. Danilewsky)
- 4 RFA (Röntgenfluoreszenz-Analyse)/XANES (entfällt)

Valenzelektronen-Spektroskopie

Übersicht

- ① UPS: Ultraviolett-Photoelektronen-Spektroskopie
- ② EELS: 'Energy-Electron-Loss'-Spektroskopie
- 3 IPE: Inverse Photoelektronen-Spektroskopie

Zusammenfassung

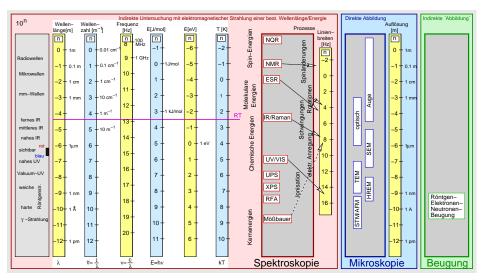
Wiederholung Spektroskopie, Einordnung der Methoden

Spektroskopie der Elektronenhülle: Übersicht

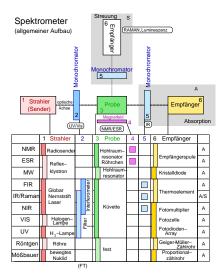
Rumpfniveau-Spektroskopie

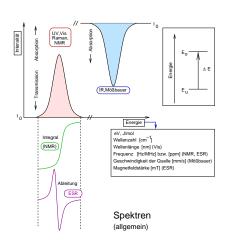
Übersich

- ① XPS: Röntgen-Photoelektronen-Spektroskopie
- ② AES: Auger-Elektronen-Spektroskopie


Valenzelektronen-Spektroskopie

Ubersicht

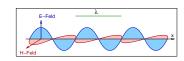

- ① UPS: Ultraviolett-Photoelektronen-Spektroskopie
- ② EELS: 'Energy-Electron-Loss'-Spektroskopie
- ③ IPE: Inverse Photoelektronen-Spektroskopie


Zusammenfassung

Spektroskopie (+Beugung+Mikroskopie) mit elektromagnetischer Strahlung

Spektroskopie: Messprinzipien und Spektren (allgemein)

Eigenschaften elektromagnetischer Strahlung


 $Welle-Teilchen\ Dualismus\mapsto Basis\ der\ WW:\ Energie+Impuls-Erhalt$

als elektromagnetische Welle

- Frequenz: ν in Hertz (Hz, s⁻¹)
- ▶ Wellenlänge: λ : $E = h\nu = h\frac{c}{\lambda} \left(\nu = \frac{c}{\lambda}\right)$
- Wellenzahl: $\tilde{\nu}$: $E = h\nu = h\frac{c}{\lambda} = hc\tilde{\nu}$
- ► Energie E in [eV], [J/mol] , ...
- ▶ typische Werte
 - ▶ 1 eV = $1.602 \cdot 10^{-19}$ J (96.5 kJ/mol) $\mapsto \lambda = 1.34 \cdot 10^{-6}$ m = 1300 nm (nahes IR)
 - ▶ Röntgen: $\lambda = 1$ Å= 100 pm $\mapsto E = 10$ keV
- zugehörige Vektorfelder:
 - Ausbreitungsrichtung \vec{x}
 - $ightharpoonup \perp$ dazu: elektrisches Wechselfeld $\vec{E}(\vec{x})$
 - $ightharpoonup \perp$ dazu: magnetisches Wechselfeld $\vec{H}(\vec{x})$

als Teilchen (Photon)

- ▶ Impuls $p = \frac{h}{\lambda}$
- typische Werte
 - Röntgen-Str. $\lambda = 1 \text{ Å} = 100 \text{ pm}$ $\mapsto p = 10^{-24} \text{ Js/m}$

Eigenschaften von Elektronen

Welle – Teilchen Dualismus → Basis der WW: Energie+Impuls-Erhalt

als Teilchen

- Masse: $m_e = 9.11 \cdot 10^{-31} \text{ kg}$
- ▶ Ladung: $e = 1.602 \cdot 10^{-19}$ As
- Geschwindigkeit: v
- ▶ Impuls: $p = m_e v$
- kinetische Energie: $E_{kin.} = \frac{1}{2} m_e v^2$
- ▶ abhängig von Beschleunigungsspannung *U*: E_{kin.} = eU
- ▶ bei U= 1 V \mapsto $E_{kin.} = eU = 1.602 \cdot 10^{-19} \text{ AsV} =$ $1.602 \cdot 10^{-19} \text{ J} = 1 \text{ eV}$

als Welle

• mit $p = \frac{h}{\lambda}$ (de Broglie)

$$\lambda = \frac{h}{p} = \frac{h}{\sqrt{2m_e eU}}$$

typische Werte:

►
$$U = 100 \text{ kV} \mapsto \lambda = 4 \cdot 10^{-12} \text{ m}$$

= 4 pm

$$p = 10^{-22} \text{ Js/m}$$

Vergleich: e⁻ - Photonen (Energie und Impuls)

Vergleich: e⁻ - Photonen

► Energien:

X:
$$\lambda = 100 \text{ pm} \mapsto E = 10 \text{ keV}$$

e⁻: $U = 10 \text{ keV}$

► Impuls (bei *E* = 10 keV)

X:
$$p = 10^{-24} \text{ Js/m}$$

$$e^-$$
: $p = 0.5 \cdot 10^{-22} \text{ Js/m}$

- für andere Methodengruppen wichtig:
 - ▶ e $^-$ bei gleichem $E \mapsto$ kleineres $\lambda \mapsto$ hohe Auflösung bei Bildgebung
 - lacktriangledown λ klein \mapsto größere Ewaldkugel \mapsto viele Reflexe in der Beugung

Vergleich mit Energie/Impuls der e in Atomen/Festkörpern

- Valenzelektronen
 - E: einige eV; v = 1 % von c
 - $p = \hbar k$ (bei $k = 10^{10} \text{ m}^{-1}$) $\mapsto 10^{-24} \text{ Js/m}$
 - $\lambda = 100$ pm (im Bereich von Atomabständen)
- ▶ innere Elektronen ('Core')
 - ► E: mehrere keV
 - p: konstant/nicht relevant

Wiederholung Spektroskopie. Einordnung der Methoder

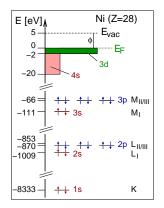
Spektroskopie der Elektronenhülle: Übersicht

Rumpfniveau-Spektroskopie

Übersich

- ① XPS: Röntgen-Photoelektronen-Spektroskopie
- ② AES: Auger-Elektronen-Spektroskopie
- $\cent{3}$ EPMA (WDX, EDX) (\mapsto A. Danilewsky)

Valenzelektronen-Spektroskopie

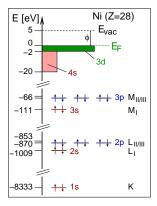

Übersich

- ① UPS: Ultraviolett-Photoelektronen-Spektroskopie
- ② EELS: 'Energy-Electron-Loss'-Spektroskopie
- ③ IPE: Inverse Photoelektronen-Spektroskopie

Zusammenfassung

Elektronen-Energien in typischen Festkörpern: Beispiel Ni-Metall

 \square 'Core'-Zustände von 'Chemie' kaum beeinflußt \mapsto Element-Analytik

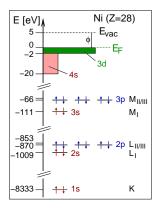


Lage der Niveaus in Ni-Metall

- \triangleright $E = f(n, l, m_l, s)$
- *n* Haupt-QZ [n=1,2,...] für E am wichtigsten:
 - ► $E(n) = -13.6 \frac{1}{n^2}$ (für H, in [eV])
 - Benennung in Rumpfniveau-Spektros.: K, L, M usw.
- / Neben-QZ [l=0 , ... , (n-1)] geringerer Einfluß auf E
 - ▶ Benennung: s, p, d, usw.; in Rumpfniveau-Spektroskopie: I, II, III (nach steigendem E)
 - ► E von Abschirmung durch innere e^- bestimmt: $E(n, l) = -C \frac{1}{(n+\alpha(n)l)^2}$
 - C: enthält Kernladungszahl
 - $\alpha(n)$: kontrolliert effektive Kernladung
- zusätzlicher Einfluss auf E: Spin-Spin- und Spin-Bahn-WW

Elektronen-Energien in typischen Festkörpern: Beispiel Ni-Metall

 \square Valenzbandbereich, höherliegende Zustände \mapsto 'chemische' Informationen


- ▶ im FK: WW aller e⁻
- $ightharpoonup \vec{k}$ als Quantenzahl (Wellenzahlvektor)
- ▶ → kontinuierliche DOS
- Valenzband-DOS: erlaubte E-Bereiche (z.B. Größe der Bandlücke)
- ▶ Bandstruktur $E = f(\vec{k})$: Impuls-Informationen (z.B. Art der Bandlücke)
- Fermifläche (für Metalle, dotierte Halbleiter)

Lage der Niveaus in Ni-Metall

- ↓ Anregung von Übergängen mittels e⁻ oder elektromagnetischer Strahlung ↓
- ↓ im passenden Energie/Impuls-Bereich ↓

Elektronen-Energien in typischen Festkörpern: Beispiel Ni-Metall

□ Valenzbandbereich, höherliegende Zustände → 'chemische' Informationen

- ▶ im FK: WW aller e⁻
- $ightharpoonup \vec{k}$ als Quantenzahl (Wellenzahlvektor)
- ▶ → kontinuierliche DOS
- Valenzband-DOS: erlaubte E-Bereiche (z.B. Größe der Bandlücke)
- ▶ Bandstruktur $E = f(\vec{k})$: Impuls-Informationen (z.B. Art der Bandlücke)
- Fermifläche (für Metalle, dotierte Halbleiter)

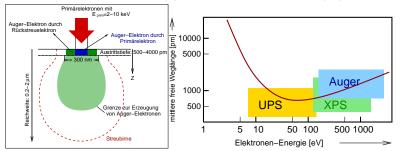
Lage der Niveaus in Ni-Metall

↓ Anregung von Übergängen mittels e⁻ oder elektromagnetischer Strahlung ↓
 ↓ im passenden Energie/Impuls-Bereich ↓

Übersicht: Elektronen- und Röntgenspektroskopie

- ▶ je nach *E*-Bereich
 - ▶ relativ hohe E (> 1 keV) (z.B. XPS, AES, RFA)
 - ▶ Anregung in tieferer e⁻-Hülle
 - ▶ nicht von Chemie/Bindungstyp usw. beeinflußt → Elementanalytik
 - ▶ niedrigere E (10-100 eV) (z.B. UPS, EELS)
 - ▶ Anregung aus Valenzband → Chemie/Bindungstyp etc. spektroskopierbar
- ▶ i.A. Emissions-Verfahren, d.h.
 - Anregung mit monochromatischer Strahlung
 - entweder elektromagnetische Strahlung (Röntgen, UV) oder e⁻
 - ▶ Detektion des E-Spektrum der Strahlung bzw. E_{kin} der e⁻
 - ▶ Benennung der Methoden nach der Strahlung, die detektiert wird
 - vier mögliche Methodengruppen
 - X e⁻
 - ② e- m e-
 - 3 e[−] **→** X
 - ④ X ➡ X
 - ▶ Winkelauflösung (Impuls!) möglich ('AR' (angle resolved)-Methoden)
 - ▶ x, y-Ortsauflösung durch 'Rastern'
 - ▶ z-Tiefenprofile durch Sputtern

Energiebereiche und Methoden


- 'Core'-Zustände
 - ▶ Energien > 1 keV
 - ▶ nicht/kaum von 'Chemie' beeinflußt → Elementanalytik
 - Methoden:
 - ① XPS (X ➡ e⁻)
 - ② AES (e⁻ → e⁻)
 - ③ EPMA (e⁻ ➡ X)
 - ④ RFA (X → X); XANES (Kantenspektroskopie)
 - praktische Limits
 - e^- : begrenzte Ein/Aus-trittstiefe \mapsto Oberflächen-Methoden (außer @)
 - ▶ e⁻: im EM auch ortsaufgelöst ('Scanning')
 - Röntgen: Quellen: Röhren (eingeschränkte E-Verteilung), Synchrotron
- Valenz-Zustände
 - ► Energien: 10-100 eV
 - chemische Bindung = Energie (und Impuls) der Valenzelektronen
 - Methoden (analog der entsprechenden 'Core'-Spektroskopie?)
 - ① (AR)UPS (besetzte Zustände
 - 2 EELS
 - 3 IPE (unbesetzte Zustände)
 - Lumineszenz-Spektroskopie (Absorption: UV/Vis-Spektroskopie)

Energiebereiche und Methoden

- 'Core'-Zustände
 - ► Energien > 1 keV
 - ▶ nicht/kaum von 'Chemie' beeinflußt → Elementanalytik
 - Methoden:
 - ① XPS (X ➡ e⁻)
 - ② AES (e⁻ → e⁻)
 - ③ EPMA (e⁻ ➡ X)
 - ④ RFA (X → X); XANES (Kantenspektroskopie)
 - praktische Limits
 - e^- : begrenzte Ein/Aus-trittstiefe \mapsto Oberflächen-Methoden (außer \oplus)
 - ► e⁻: im EM auch ortsaufgelöst ('Scanning')
 - ▶ Röntgen: Quellen: Röhren (eingeschränkte E-Verteilung). Synchrotron
- ► Valenz-Zustände
 - ► Energien: 10-100 eV
 - ► chemische Bindung = Energie (und Impuls) der Valenzelektronen
 - Methoden (analog der entsprechenden 'Core'-Spektroskopie?)
 - ① (AR)UPS (besetzte Zustände)
 - ② FFIS
 - ③ IPE (unbesetzte Zustände)
 - 4 Lumineszenz-Spektroskopie (Absorption: UV/Vis-Spektroskopie)

Experimentelle Gemeinsamkeiten

- Probenumgebung:
 - ▶ bei Beteiligung von e⁻ (= bei allen Methoden außer RFA)
 → Hochvakuum erforderlich
- Methoden mit e[−]-Strahl (EPMA, EELS, AES) → Elektronenmikroskop
 - ⊕ ortsaufgelöst (Rastern/Scannen), ggf. Tiefenauflösung durch Sputtern
 - $\,\ominus\,$ Probleme mit nicht elektronisch leitfähigen Proben
- ▶ Ortsauflösung (Lateral (x,y) bzw. Tiefe z)
 - ▶ begrenzt durch 'Streubirne' (X) bzw. mittlere freie Weglänge (e⁻)

Wiederholung Spektroskopie, Einordnung der Methoden Spektroskopie der Elektronenhülle: Übersicht

Rumpfniveau-Spektroskopie

Übersicht

- ① XPS: Röntgen-Photoelektronen-Spektroskopie
- ② AES: Auger-Elektronen-Spektroskopie
- ③ EPMA (WDX, EDX) (→ A. Danilewsky)
- 4 RFA (Röntgenfluoreszenz-Analyse)/XANES (entfällt)

Valenzelektronen-Spektroskopie

Übersicht

- ① UPS: Ultraviolett-Photoelektronen-Spektroskopie
- ② EELS: 'Energy-Electron-Loss'-Spektroskopie
- ③ IPE: Inverse Photoelektronen-Spektroskopie

Zusammenfassung

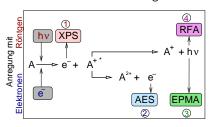
Wiederholung Spektroskopie, Einordnung der Methoden Spektroskopie der Elektronenhülle: Übersicht

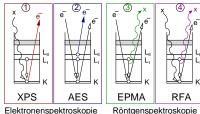
Rump fnive au-Spektroskopie

Übersicht

- ① XPS: Röntgen-Photoelektronen-Spektroskopie
- ② AES: Auger-Elektronen-Spektroskopie

Valenzelektronen-Spektroskopie


Übersicht


- ① UPS: Ultraviolett-Photoelektronen-Spektroskopie
- ② EELS: 'Energy-Electron-Loss'-Spektroskopie
- ③ IPE: Inverse Photoelektronen-Spektroskopie

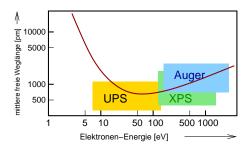
Zusammenfassung

Übersicht: Methoden zur Elementanalytik von FK (Bulk+Oberfläche)

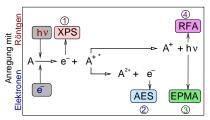
- vier verschiedene Methoden/Prinzipien
 - ① X ➡ e¯: XPS (Röntgen-PE-Spektroskopie) = ESCA (Electron Spectroscopy for Chemical Analysis)
 - ② e⁻ → e⁻: AES (SAM = Scanning-Auger-Elektronmikroskopie: im EM)
 - ③ e⁻ → X: EPMA ('Mikrosonde') entweder als EDX oder WDX (EPMA = Electron Probe Microanalysis: analytische Elektronen-Mikroskopie)
 - ④ X → X: RFA: Röntgenfluoreszenzanalyse (engl. XRF)

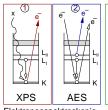
Lage der Rumpfniveaus

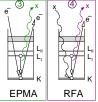
- \triangleright E_X (und $\triangle E_{XY}$ zwischen Niveaus) spezifisch für Atomsorte (A)
- ▶ E aller Niveaus fallen mit Z, für Elemente der 3. Periode [eV]


Z		K 1s	L1 2s	L2 2 p1/2	L3 2p3/2	M1 3s	M2 3p1/2	M3 3p3/2	M4 3d3/2	M5 3d5/2
19	K	3608.4	378.6	297.3	294.6	34.8	18.3	18.3		
20	Ca	4038.5	438.4	349.7	346.2	44.3	25.4	25.4		
21	Sc	4492	498.0	403.6	398.7	51.1	28.3	28.3		
22	Ti	4966	560.9	460.2	453.8	58.7	32.6	32.6		
23	V	5465	626.7	519.8	512.1	66.3	37.2	37.2		
24	Cr	5989	696.0	583.8	574.1	74.1	42.2	42.2		
25	Mn	6539	769.1	649.9	638.7	82.3	47.2	47.2		
26	Fe	7112	844.6	719.9	706.8	91.3	52.7	52.7		
27	Со	7709	925.1	793.2	778.1	101.0	58.9	59.9		
28	Ni	8333	1008.6	870.0	852.7	110.8	68.0	66.2		
29	Cu	8979	1096.7	952.3	932.7	122.5	77.3	75.1		
30	Zn	9659	1196.2	1044.9	1021.8	139.8	91.4	88.6	10.2	10.1

- ▶ PSE mit Daten zum Klicken
- Änderungen in Valenzschale ('Chemie', Oxidationsstufen etc.) verschieben
 E um wenige eV


erfasster Probenbereich


- ▶ Bulk- oder Oberflächen-Methode → Laterale/Tiefen-Auflösung
- ▶ Probenbereich = f(Eindringtiefen, Streubirnen usw.)
- ▶ Röntgenspektroskopie: i.A. Bulk-Methode


 - \blacktriangleright 3 EPMA (EDX/WDX): bis 1 μ m, damit nur 'fast'-Bulk-Methode
- ▶ e⁻-Spektroskopie (① und ②) i.A. Oberflächen-Methode
- mittlere freie Weglänge von e⁻= f(e⁻-Energie)
 - ▶ grober Verlauf nahezu unabhängig von der Probeart →
 - ▶ typische Probentiefe ≡ mittlere freie Weglänge
 - Minimum bei ca. 50 eV (λ=300 pm) → UPS besonders oberflächen-spezifisch

Röntgen/Elektronenspektroskopie zur Elementanalytik ('Core')

Elektronenspektroskopie

Röntgenspektroskopie

	Methode	Information		laterale Auflösung $[\mu m]$	Nachweis- grenze [ppm]	quantitativ mit Standard [%]
1	XPS (ESCA)	E, C	\geq He	10-1000	10 ³	1
2	AES	E, (C)	\geq Li	0.1-3	10 ³	5
3	EPMA (EDX)	Ε	$\geq C$	< 1	$< 10^{3}$	10
	EPMA (WDX)	Ε	$\geq C$	1	10 ²	10
4	RFA	Ε	$\geq F$	1000	0.1	< 1

Wiederholung Spektroskopie, Einordnung der Methoden Spektroskopie der Elektronenhülle: Übersicht

Rumpfniveau-Spektroskopie

Übersich

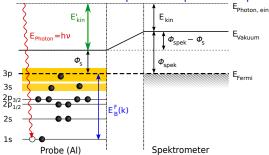
- ① XPS: Röntgen-Photoelektronen-Spektroskopie
- ② AES: Auger-Elektronen-Spektroskopie

Valenzelektronen-Spektroskopie

Ubersich¹

- ① UPS: Ultraviolett-Photoelektronen-Spektroskopie
- ② EELS: 'Energy-Electron-Loss'-Spektroskopie
- ③ IPE: Inverse Photoelektronen-Spektroskopie

Zusammenfassung


① XPS: Röntgen-Photoelektronen-Spektroskopie: Prinzip

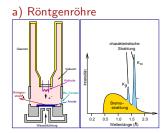
- ► äußerer Photoeffekt^{1,2}: $A + h\nu \longrightarrow A^+ + e^-$
- ► Energie- und Impulserhalt
- Anregung: monochromatische Photonen (Röntgen, d.h. E_{prim} > 100 eV)
- ➤ XPS-Spektrum:³
 Detektion der Zahl *N* der e⁻ nach Energie, *N(E)* im Bereich: *E*=0 ... *E*_{prim}
- ightharpoonup zusätzlich wichtig: Austrittsarbeiten ('Work function') ϕ

¹Heinrich Hertz 1887: Beobachtung; ²Albert Einstein 1905: Erklärung; ³Kai Siegbahn 1955: Anwendung

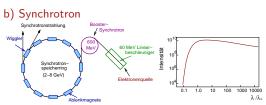
① XPS: Röntgen-Photoelektronen-Spektroskopie: Prinzip

kinetische Energie der Photoelektronen

$$E_{\text{kin.}} = h\nu_{\text{prim.}} - \phi - |E_{\text{B}}|$$


 $\nu_{\rm prim.}$ Photonenfrequenz der Quelle

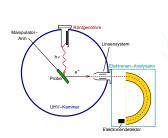
φ Austrittsarbeit(en) (s.o.)


E_B Bindungsenergie des Zustands

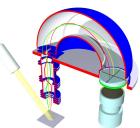
ightharpoonup Bestimmung der Bindungsenergien $E_{\rm B}$

① XPS: Apparatives 1: Röntgenquellen

- monochromatisch
- ▶ i.A. für XPS verwendet:
 - Al_{Kα}: 1498 eV
 Mg_{Kα}: 1256 eV
- Linienbreiten: δ ca. 1 eV



- \oplus hohe Leistung, λ durchstimmbar
- Links:
 - http://www.lightsources.org/ Synchrotrone allgemein
 - https://www.diamond.ac.uk/Home.html Diamond Light Source, England
 - http://www.aps.anl.gov/video/ Argonne, Advanced Photon Source
 - http://www.esrf.eu/ ESRF


https://www.helmholtz-berlin.de/quellen/be Bessy-II, Berlin, Liste der Beamlines

① XPS: Apparatives 2: Probe, Spektrometer

- ▶ Probenraum: UHV (10⁻⁸ ... 10⁻¹⁰ mbar)
- ▶ Spektrometer: elektrostatische Elektronenspektrometer
 - ▶ Sortierung der e[−] in elektrischen Feldern
 - > zylindrische (CMA) oder sphärische (CHA) Elektroden mit Potentialgefälle
 - ightharpoonup e⁻ mit bestimmtem E_{kin} , fliegen vom Eintritts- zum Austritts-Spalt

Schema einer Labor-Anlage

Halbkugelanalysator (schematisch)

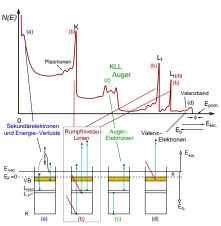
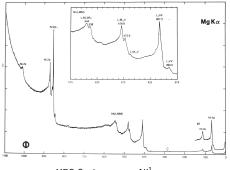


Foto XPS-Laboranlage¹

⁽CHA: Canonical hemispherical analyser)


¹ D. Schrupp, Univ. Ausgsburg

① XPS: Prozesse und typische Spektren

- Spektrum = Zahl N(E) photoemittierter e⁻
- Prozesse, die zur Emission von e bestimmter E führen:
 - (a) Sekundär-e⁻-Anregung und E-Verluste bei inelastischer Streuung vor Emission (sehr niederenergetisch, hoher Untergrund)
 - (b) Emission aus Rumpfniveaus (eigentliche XPS-Spektren)
 - (c) Auger-Prozesse(mit AES ↓ genauer spektroskopierbar)unterscheidbar von PE durch
 - breitere Peaks
 - E-Lage unabhängig von Anregungsenergie

Beispiel I: XPS-Spektrum von Ni

XPS-Spektrum von Ni¹

- ▶ Vergleich mit berechneten *E* (s.o.)
 - 1s: nicht im *E*-Fenster der Anregungsstrahlung (1256 eV)
 - 2s: 1009 statt 1031 eV (Relaxationsprozesse, Emission aus angeregtem Atom (Koopman-Theorem² gilt nicht))
 - 2p: gemäß J-Splitting aufgespalten in ${}^2P_{1/2}$ und ${}^2P_{3/2}$ S=1/2, L=1 \mapsto

$$J = |L + S|, ..., |L - S| = \frac{1}{2} + \frac{3}{2}$$
Splitting \rightarrow Rückschlüsse auf

- Splitting \mapsto Rückschlüsse auf Drehimpuls (s, p, d?)
- ightharpoonup zusätzlich: Auger-e $^- \mapsto$ s.u.
- ightharpoonup Datenbanken genauer E-Lagen \mapsto qualitative Element-Analytik
- ightharpoonup nach Eichung \mapsto halbquantitative Element-Analytik \mapsto

^{1:} Haarer/Spiess: 2: Koopman-Theorem: Emission erfolgt aus dem Grundzustand

TO XPS: Röntgen-Photoelektronen-Spektroskopie

① XPS: Quantifizierung für die Elementanalytik

theoretisch:

$$I_{AX}^{\infty} = n_{AX}\sigma_{AX}(h\nu)\sec\delta N_A Q_A(E_{AX})\lambda_A(E_{AX})$$

Probe \triangleright n_{AX} : Elektronenpopulation des Levels X des Elementes A

 $ightharpoonup \sigma_{AX}(h\nu)$: Ionisierungswirkungsquerschnitt (tabelliert für alle Elemente)

▶ N_A : Atomdichte der Komponente $A \mapsto MESSUNG$!

Q_A(E): Faktor f
ür die I-Reduktion durch elastischen Streuung

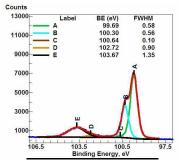
 $\rightarrow \lambda(E)$: inelastische mittlere freie Weglänge der e

Quelle δ : Beschußwinkel relativ zur Probennormalen [$sec = \frac{sin}{cos}$; am größten bei 90°]

real verwendete vereinfachte Formel:

$$I_{AX}^{XPS} = S_A^a C_A$$

CA: Konzentration der Atomsorte A


S₄^a: Empfindlichkeitsfaktor

► Element- und Übergangs-spezifisch

Apparatur- und Primärenergieabhängig

nur sehr schwach konzentrationsabhängig

▶ Fazit: bei guten Standards auf wenige % genau möglich

Signal	E [eV]	Zuordnung
Α	99.69	Si ⁰ (elementar)
В	100.30	Si^+
C	100.64	Si ²⁺
D	102.72	Si ³⁺
Ε	103.67	Si ⁺⁴ (SiO ₂)

- ► XPS-Spektrum von teil-oxidiertem Si(100) nahe des Si 2*p*-Niveaus
- ▶ Quelle: Synchrotron, 130 eV
- ► Unterschied der Si-Spezies nach Oxidationsstufe → Info zum Oxidationszustand von Elementen:
- 'chemische Verschiebung'
- ► *E*_B größer, je höher oxidiert ein Flement ist
- ▶ aber: sehr kleiner Effekt, nur wenige eV → nur mit Synchrotron-Strahlung messbar

① XPS: Zusammenfassung

- ▶ Labor- (Mg/Al-Röntgenröhre) oder Synchrotron-Methode
- ▶ Probe: Metalle und Halbleiter, bis zu größeren Bandlücken
- zerstörungsfreie Elementanalytik von Festkörper-Oberflächen
- ► für alle Elemente möglich
 - quantitativ nur mit Eichung
 - ▶ Informationen zu den Oxidationszuständen etc. nur mit Synchrotron
- ► Ortsauflösung:
 - lateral: abhängig von der Bauart
 - ► Tiefe (z) durch Weglänge der PE bestimmt, ca. 500-5000 pm
 - echte Tiefenprofile nur eingeschränkt durch Winkel zwischen Primär/Sekundär-Strahl messbar
- typische Anwendungen:
 - Halbleiter, Solarzellen, Elektroden, dünne Schichten ...
 - ▶ heterogene Katalysatoren, 'nano'-Materialien ...
- Nachteile (außer der bei der PE-Spektroskopie üblichen)
 - ▶ laterale Auflösung ('Scannen') nur durch Detektor-Bewegung möglich
 - ▶ Quelle, monochromatisch → bestimmt E-Auflösung

Wiederholung Spektroskopie, Einordnung der Methoden Spektroskopie der Elektronenhülle: Übersicht

Rumpfniveau-Spektroskopie

Übersich

- ① XPS: Röntgen-Photoelektronen-Spektroskopie
- ② AES: Auger-Elektronen-Spektroskopie
- ③ EPMA (WDX, EDX) (→ A. Danilewsky)

Valenzelektronen-Spektroskopie

Übersicht

- ① UPS: Ultraviolett-Photoelektronen-Spektroskopie
- ② EELS: 'Energy-Electron-Loss'-Spektroskopie
- ③ IPE: Inverse Photoelektronen-Spektroskopie

Zusammenfassung

② AES: Auger-Elektronen-Spektroskopie: Historisches

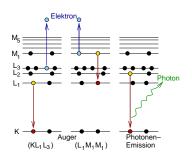
- ▶ 1922
- erster Bericht¹ des Effekts

Lise Meitner 1878 - 1968

- ▶ 1925
- ▶ erneuter Bericht², Namensgebung

Pierre Victor Auger

 $^{^1}$ L. Meitner: Über die β -Strahl-Spektren und ihren Zusammenhang mit der γ -Strahlung. Zeitschrift für Physik A 11, 35-54 (1922).

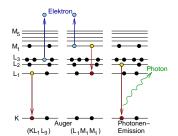

② AES: Auger-Elektronen-Spektroskopie: Prinzip

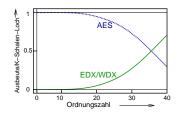
► *E*-Analyse von Auger-*e*⁻, die beim Beschuß mit *e*⁻ emittiert werden:


$$A + e^{-} \longrightarrow A^{2+} + 2e^{-}$$

- ▶ z.B. KL_1L_{III} -Auger-Prozess \Rightarrow
 - 1. Primär-e⁻ erzeugt Loch in K-Schale
 - 2. e^- aus L_I fällt nach K (füllt das Loch)
 - gibt E an e⁻ in L_{III} ab, das dann emittiert wird → eigentliches 'Auger'-e⁻
- ► E_{kin}: Element- und Übergangs-spezifisch
 - ► Benennung der Zustände (s.o.)
 - ▶ K, L, M für Haupt-QZ n = 1, 2, 3
 - ▶ weitere Zahlen (für I) nach steigender E
- ightharpoonup E jedes Auger-Übergang = f(drei Niveaus)
- ▶ für *E*_{kin}(KLL) des Auger-e[−] von oben:

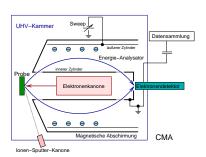
$$E_{\text{kin.}} = E_{\text{B}}(K) - E_{\text{B}}(L_I) - E_{\text{B}}(L_{III}) - \phi$$




2 AES: Lage der typischen AES-Signale der Elemente

② AES: Auger-Elektronen-Spektroskopie: Prinzip

- ▶ Konkurrenz AE Emission von Röntgenstrahlung (EDX/WDX)
- für Wahrscheinlichkeiten γ gilt: $\gamma_{AE} + \gamma_{X} = 1$
 - γ_A: Auger-Übergangswahrscheinlichkeit
 - $ightharpoonup \gamma_X$: Wahrscheinlichkeit für Photonen-Emission
- $ightharpoonup \gamma_X \sim Z^4$, d.h. ...
 - ▶ leichte Elemente → Auger-e⁻ → AES empfindlich für O, S, N, F, Cl usw.
 - Schwere Elemente → Photonenemission → EDX/WDX/EPMA für schwere Elemente
- EDX/WDX (EPMA) und AES sind komplementäre Methoden

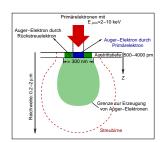


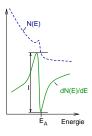
② AES: Apparatives 1: AES-Spektrometer

- Zylinder-Spiegelanalysator (CMA)
 - geerdeter innerer Zylinder
 - koaxialer äußerer Zylinder, an dem negative Gegenspannung durchgefahren wird
- ▶ e⁻-Quelle als koaxiale Innenquelle (genaue E <u>nicht</u> relevant)
- ▶ typische E: 2 10 keV bei $\Delta E = 0.2$ 0.6 eV (LaB₆-Kristall-Kathode \mapsto EM)
- zusätzlich Ionenkanone für Sputtertiefenprofile und Oberflächenreinigung
 - z.B. Edelgas-Ionen mit 0.5-5 keV
- auch CHA-Detektoren, s. bei XPS

Alternative: AES im EM

- ► Einbau eines CMA bzw. e⁻-E-Spektrometers ins EM
- ► Ortsauflösung möglich: AEM = A-e⁻-Mikroskopie
- ▶ wenn alle e⁻ detektiert werden → normale EM (Bildgebung)




② AES: Auflösung, Spektren

- ightharpoonup Ortsauflösung: lateral (x-y) und in Tiefe (z)
 - z nur wenige Atomlagen werden erfasst,z-Profile nur durch Sputtern
 - x-y trotz hochfokussiertem Primärstrahl durch Rückstreuprozesse auf ca. 300 nm beschränkt

Spektren

- ▶ sehr vieler Streuelektronen → kleine Signale und großer Untergrund
- differenzierte Spektren:
 - ► tabellierte *E* = Minimum des differenzierten Spektrums
- I-Auswertung der Peak-to-Peak-Signale des differenzierten Spektrums → noch schwieriger als bei XPS ↓

2 AES: Quantifizierung für die Elementanalytik

ideal: amorphe Probe ohne Rauhigkeit

$$I_A^{AES} = I_P \sec \delta \sigma_{AX} \gamma_A (1 + \bar{r_A}) T(E_{XYZ}) D(E_{XYZ}) \int_z^\infty N_A(z') e^{rac{z-z'}{\lambda \cos \theta}} dz'$$

Quelle

- ► I_P: Primär-e⁻-Strom
- δ: Beschußwinkel relativ zur Probennormalen [sec = $\frac{\sin}{\cos}$; am größten bei 90°]

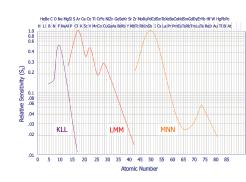
Probe

- lacktriangledown : Ionisierungswirkungsquerschnitt (tabelliert für alle Elemente)
- ▶ N_A : Atomdichte der Komponente $A \mapsto MESSUNG!$
- $ightharpoonup \lambda$: mittlere freie Weglänge der Auger-e $^-$ mit kin. Energie E_{XYZ} $\lambda = f(E_{kin})$ der erzeugten e $^-$ (Minimum von ca. 500 pm bei ca. 50 eV)
- γ_A: Augerübergangswahrscheinlichkeit (s. Konkurrenz mit Photoemission; tabelliert)
- ▶ r̄_A: mittlerer Rückstreufaktor der Primär-e⁻ (tabelliert)
- ightharpoonup z': Tiefe, bezogen auf die aktuelle Oberfläche bei z'=0
- z: aktuelle Position der Oberfläche bezüglich einer festen Tiefenskala

Spektrom.

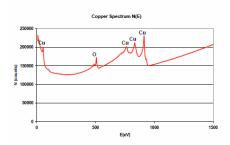
- θ: Eintrittswinkel der Auger-e⁻ relativ zur Probennormalen
- T(E_{XYZ}): Transmissionsfunktion des Analysators
- ► D(E_{XYZ}): Nachweisempfindlichkeit des Detektors
- real verwendete vereinfachte Formel:

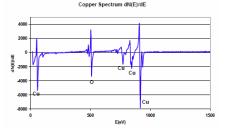
$$I_A^{AES} = S_A^a C_A$$


② AES: Quantifizierung für die Elementanalytik (Forts.)

real verwendete vereinfachte Formel:

$$I_A^{AES} = S_A^a C_A$$


 C_A : Konzentration der Atomsorte A S_A^a : Empfindlichkeitsfaktor $\Rightarrow \Rightarrow$


- ► Element- und Übergangsspezifisch
- Apparatur- und
 Primärenergieabhängig
- nur sehr schwach konzentrationsabhängig
- Fazit: bei guten Standards für leichte Elemente der Oberfläche halbquantitativ möglich

② AES: Beispiel I: Metall-Oberflächen

- AES-Spektrum einer Cu-Oberfläche
- ► Cu: LMM (920 eV)
- ► Cu: MNN (50 eV)
- Sauerstoff KLL gut sichtbar, trotz sehr dünner Oxid-Schicht
- innere Schalen nicht von 'Chemie' beeinflußt
- ► VB-Übergänge enthalten Infos zum Bindungszustand
 - ▶ genaue *E*-Lage
 - Breite der Auger-Bande

② AES von Isolatoren

- ▶ Probleme bei der Messung von Isolatoren
- es muß gelten:

$$I_P = I_A + I_S$$

- I_P: Primärelektronenstrom
 - ► I_A: Sekundärelektronenstrom, A-e⁻
 - ► I_S: Strom durch die Probe
- ▶ Probe mit großem elektronischem Widerstand ρ (kritisch: 100 Ω m)
 - I_A extrem klein
 - Aufladung der Oberfläche
- ▶ Größe und Vorzeichen der Aufladung → beeinflussen Sekundärelektronenausbeute
- geeignet zur Messung von Oberflächenpotentialen Peakshifts von wenigen eV

② AES: Zusammenfassung

- Labor-Methode, mit und ohne EM möglich
- ▶ Probe: Metall und Halbleiter, Proben mit größeren Bandlücken problematisch
- ► Elementanalytik der allerobersten Schichten von Festkörper-Oberflächen
- Elemente: besonders geeignet für leichte Elemente (komplementäre Methode zur EDX)
- ► Ortsauflösung:
 - x,y (lateral) begrenzt auf ca. 300 nm, abhängig von E der Primärelektronen
 - z Tiefe ebenfalls steuerbar durch E der Quelle, bestimmt durch Weglänge der Anregungs- <u>und</u> Auger-e⁻ typischer Wert: ca. 500 pm (! wenige Atomlagen!)
- Nachteil (außer der üblichen bei der PE-Spektroskopie)
 - quantitativ extrem schwierig
 - nur Metalle und Schmalbandhalbleiter messbar

①+② XPS+AES: Literatur und Links

- Bücher
 - D. Haarer, H. W. Spiess: Spektroskopie amorpher und kristalliner Festkörper, Steinkopff, Darmstadt, 1995
 - Siegfried Hofmann: Auger- and X-Ray Photoelectron Spectroscopy in Materials Science A User-Oriented Guide, Springer, 2012
 - David Briggs, John T. Grant: Surface Analysis by Auger and X-ray photoelectro spectrocopy, 2003
- ▶ allgemeine Links
 - Rick Haasch, Illinois Videos verschiedener Workshops
- ► Geräte-Hersteller
 - Kratos
 - ► Thermofisher
 - ▶ Joel
 - ► Azom
 - ► Ulvac

Einleitung

Wiederholung Spektroskopie, Einordnung der Methoden Spektroskopie der Elektronenhülle: Übersicht

Rumpfniveau-Spektroskopie

Übersich

- ① XPS: Röntgen-Photoelektronen-Spektroskopie
- ② AES: Auger-Elektronen-Spektroskopie
- ③ EPMA (WDX, EDX) (→ A. Danilewsky)

Valenzelektronen-Spektroskopie

Übersicht

- ① UPS: Ultraviolett-Photoelektronen-Spektroskopie
- ② EELS: 'Energy-Electron-Loss'-Spektroskopie
- ③ IPE: Inverse Photoelektronen-Spektroskopie

Zusammenfassung

Literatur

3 EPMA (WDX, EDX)

bei Elektronenmikroskopie (A. Danilewsky)

Einleitung

Wiederholung Spektroskopie, Einordnung der Methoden Spektroskopie der Elektronenhülle: Übersicht

Rumpfniveau-Spektroskopie

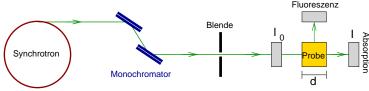
Übersich

- ① XPS: Röntgen-Photoelektronen-Spektroskopie
- ② AES: Auger-Elektronen-Spektroskopie
- 4 RFA (Röntgenfluoreszenz-Analyse)/XANES (entfällt)

Valenzelektronen-Spektroskopie

Ubersicht

- ① UPS: Ultraviolett-Photoelektronen-Spektroskopie
- ② EELS: 'Energy-Electron-Loss'-Spektroskopie
- ③ IPE: Inverse Photoelektronen-Spektroskopie


Zusammenfassung

Literatur

④ RFA: Röntgenfluoreszenz-Analyse/XANES

- ▶ RFA: reine Elementanalytik (Emission!)
- $\begin{tabular}{ll} \blacksquare & als Absorptionsmethode komplement \begin{tabular}{ll} array & also & also$
- ▶ ↓ kleiner Auszug

XAS (RFA): Messprinzip

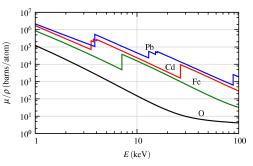
Prinzip der Messung von Röntgenabsorptionsspektren (und RFA)

- ► XAS (Absorption): Messung der Intensität hinter der Probe
- ▶ für Absorption gilt nach Lambert-Beer:

$$I = I_0 e^{-\mu(E)d}$$

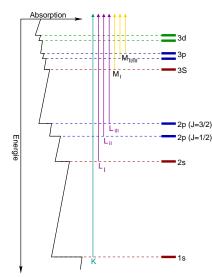
mit: f: Intensität hinter der Probe f: Intensität des Primärstrahl f: Probendicke f: Absorptionskoeffizient

- $\blacktriangleright \mu$ abhängig von $E, Z, \rho, m, ...$
- ▶ Variation von E (Synchrotron) \mapsto Messung von $\mu = f(E, ...)$
- komplementär: RFA
 - Fluoreszenz beim Wiederauffüllen der Core-Löcher
 - ightharpoonup quantitative Element-Bestimmung bei bekanntem fixem 'passenden' λ (Röntgenröhre)

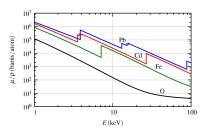

Absorptionskoeffizient $\mu = f(Kernladungszahl Z)$

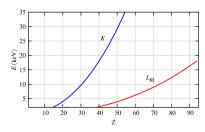
▶ Abfall des Absorptionskoeffizienten μ mit E nach:

$$\mu pprox rac{
ho Z^4}{mE^3}$$


mit: ρ: Dichte der Probe Ε: Röntgenenergie Z: Ordnungszahl des absorbierenden Atomsm: Atommasse des absorbierenden Atoms

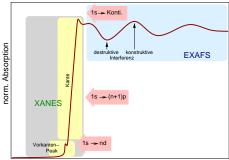
b d.h. $\mu \propto Z^4$ und $\mu \propto \frac{1}{E^3}$


Absorptionskoeffizient $\mu = f(E \text{ der Core-Elektronen})$


- bei schwereren Elementen
 - sprunghafte Änderungen des Absorptionskoeffizienten μ
 - ▶ sog. 'Kanten'
- Grund: Photoeffekt
- Absorption der Röntgenstrahlung durch E-Übertrag auf Core-Elektronen 'passender' Energie
 - ▶ K: e⁻ aus 1s-Schale
 - $ightharpoonup L_I$: e^- aus 2s-Schale
 - L_{II/III}: e⁻ aus 2*p*-Schale $(J = \frac{1}{2})$ und $\frac{3}{2}$
- Folgeprozesse s. Einleitung, hier nicht relevant!

Lage der Röntgenkanten

- für die Energie der K-Kante gilt: $E_K \propto Z^2$
- ▶ Elemente mit Z > 18
 - \mapsto K- oder L-Kante zwischen 5-35 keV
 - \mapsto gut erreichbar mit Synchrotron-Strahlung



- ightharpoonup zusätzlich: Verschiebungen und Oszillationen von μ an den Kanten
- ▶ Basis von EXAFS und XANES

Details der Absorptionskanten

- ▶ mittels Synchrotron, d.h. brillianter durchstimmbarer Röntgenquellen
- Oszillationen hinter den Absorptionskanten (ca. 1975 zuerst beobachtet)
- heute zwei Methoden/Bereiche
 - XANES < 50 eV: near-edge range (Nahkanten-Bereich) (X-ray absorption near edges spectroscopy)
 - EXAFS > 50 eV: extended x-ray absorption fine structure ("innere Elektronenbeugung")

Energie (eV)

Grundsätzliche Vor/Nachteile der Röntgenabsorptions-Methoden

- selektive Sonde f
 ür ausgewählte Atomsorte (best. Kante)
- ▶ \ominus nur für Elemente mit Z > 18
- echte 'Bulk'-Methoden
- keine Translationsfernordnung (Kristall) erforderlich
 - ▶ amorphe Stoffe, Gläser, (Bio)polymere, 'Nano', flüssig
- auch Ortsaufgelöst (μ-XANES usw.)
- vielfältige Anwendungsgebiete
 - Chemie, Materialwissenschaften, Biologie, Geowissenschaften, ...
- ► ⊖ Synchrotron erforderlich
- je nach Methode unterschiedliche Information zum spezifischen Atom und seiner Umgebung

Einleitung

Wiederholung Spektroskopie, Einordnung der Methoden Spektroskopie der Elektronenhülle: Übersicht

Rumpfniveau-Spektroskopie

Übersich

- ① XPS: Röntgen-Photoelektronen-Spektroskopie
- ② AES: Auger-Elektronen-Spektroskopie

Valenzelektronen-Spektroskopie

Übersicht

- ① UPS: Ultraviolett-Photoelektronen-Spektroskopie
- ② EELS: 'Energy-Electron-Loss'-Spektroskopie
- ③ IPE: Inverse Photoelektronen-Spektroskopie

Zusammenfassung

Literatur

Einleitung

Wiederholung Spektroskopie, Einordnung der Methoden Spektroskopie der Elektronenhülle: Übersicht

Rumpfniveau-Spektroskopie

Übersich

- ① XPS: Röntgen-Photoelektronen-Spektroskopie
- ② AES: Auger-Elektronen-Spektroskopie
- $ilde{ text{@}}$ RFA (Röntgenfluoreszenz-Analyse)/XANES (entfällt)

Valenzelektronen-Spektroskopie

Übersicht

- ① UPS: Ultraviolett-Photoelektronen-Spektroskopie
- ② EELS: 'Energy-Electron-Loss'-Spektroskopie
- ③ IPE: Inverse Photoelektronen-Spektroskopie

Zusammenfassung

Literatur

Wiederholung: Energiebereiche und Methoden

- 'Core'-Zustände
 - ► Energien > 1 keV
 - ▶ nicht/kaum von 'Chemie' beeinflußt → Elementanalytik
 - Methoden:
 - ① XPS (X ➡ e⁻) ✓
 - ② AES (e⁻ → e⁻) ✓
 - ③ EPMA (e⁻ ➡ X) ✓
 - ④ RFA (X ➡ X); XANES (Kantenspektroskopie) X
 - praktische Limits
 - ▶ e^- : begrenzte Ein/Aus-trittstiefe \mapsto Oberflächen-Methoden (außer \oplus)
 - ▶ e⁻: im EM auch ortsaufgelöst ('Scanning')
 - ▶ Röntgen: Quellen: Röhren (eingeschränkte E-Verteilung) oder Synchrotron
- ▶ Valenz-Zustände
 - Energien: 10-100 eV
 - ► chemische Bindung = Energie (und Impuls) der Valenzelektronen
 - Methoden (analog der entsprechenden 'Core'-Spektroskopie?)
 - ① (AR)UPS (besetzte Zustände)
 - ② FFLS
 - ③ IPE (unbesetzte Zustände)
 - 4 Lumineszenz-Spektroskopie (Absorption: UV/Vis-Spektroskopie)

Übersicht, Einleitung, Wiederholung

Wiederholung

bisher Elektronen/Röntgen-Spektroskopie tieferliegender Zustände

- nahezu unabhängig von 'Chemie' (Oxidationsstufen, chemische Bindung)
- geeignet für quantitative Elementanalytik von Oberflächen

jetzt Elektronen-Spektroskopie des Valenzband-Bereiches

- ▶ Informationen zur 'Chemie', d.h. für Festkörper:
 - ▶ DOS: Zahl der Zustände im *E*-Intervall
 - **Bandstruktur**: E als Funktion der 'Quantenzahl' $k = \text{Impuls der e}^- (p = \hbar k)$
 - ► Fermifläche

Methoden zur Messung der...

- ▶ DOS: E vergleichsweise einfach messbar:
 - ▶ besetzte Zustände ($< E_F$): UPS = Ultraviolett-PE-Spektroskopie
 - ▶ unbesetzte Zustände (> E_F): IPE = Inverse PE-Spektroskopie
- ▶ Bandstruktur und Fermifläche: E als f(k) schwieriger messbar,
 - da k (und p) vektoriell → richtungsabhängige Messung nötig (AR, 'angle resolved')

diese Methoden

▶ e⁻-Spektroskopie mit niedrigem $E \mapsto$ sehr oberflächenspezifisch (s.o.)

Einleitung

Wiederholung Spektroskopie, Einordnung der Methoden Spektroskopie der Elektronenhülle: Übersicht

Rumpfniveau-Spektroskopie

Übersich

- ① XPS: Röntgen-Photoelektronen-Spektroskopie
- ② AES: Auger-Elektronen-Spektroskopie
- $ilde{ text{@}}$ RFA (Röntgenfluoreszenz-Analyse)/XANES (entfällt)

Valenzelektronen-Spektroskopie

Ubersicht

- ① UPS: Ultraviolett-Photoelektronen-Spektroskopie
- ② EELS: 'Energy-Electron-Loss'-Spektroskopie
- ③ IPE: Inverse Photoelektronen-Spektroskopie

Zusammenfassung

Literatur

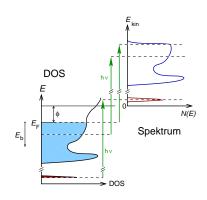
① UPS: Energiebereich

Prinzip analog XPS, nur niederenergetischere Anregung

- ightharpoonup XPS: $h
 u > 1000 \text{ eV} = 1 \text{ keV} \mapsto \text{Spektroskopie der Core-Zustände}$
- ► SXPS: hv 100 bis 1000 eV
- ▶ UPS: $h\nu$ 10 bis 100 eV \mapsto Valenzband-Spektroskopie
 - ▶ Primär-Strahlung ionisiert nur schwach gebundene e[−]
 - liefert Informationen zum Anfangszustand der Anregung (BS/DOS besetzter Bereiche)
 - ▶ wegen niedriger E nur ca. 2-3 Atomlagen Tiefe (z)
- ▶ dagegen < 10 eV
 - nur Anregung in energetisch h\u00f6herliegende B\u00e4nder
 - ightharpoonup \mapsto keine Ionisation = keine PE!
 - ▶ → optisches Absorptionsspektrum ('UV-Vis')
 - enthält Informationen zum Anfangs- und Endzustand, sowie zur Übergangswahrscheinlichkeit

① UPS: Prinzip

- ▶ Messung von *E*_{kin} der Photoelektronen
- aufgrund von Energie-Erhaltung gilt analog XPS:


$$E_{ ext{kin.}} = h
u_{ ext{ph.}} - \phi - |E_{ ext{B}}|$$

 $\nu_{\rm ph.}$ Photonenfrequenz der Quelle

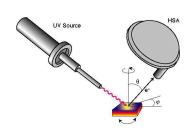
 ϕ Austrittsarbeit(en) (s.o.)

E_B Bindungsenergie des Zustands

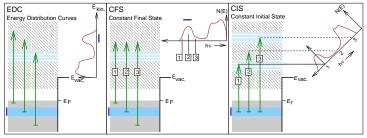
- ► Intensitäten abhängig von
 - DOS des Ausgangsniveaus
 - ► Endniveau (je nach Methode, s.u.)
 - Übergangswahrscheinlichkeiten (kompliziert!)

① UPS: Experimentelles

► Quelle


- 1. Gasentladungslampen (monochromatisch) z.B. He-I: 21.21 eV, k_{\parallel} <1.8 Å $^{-1}$
- 2. Laser (6-11 eV, mittels SHG, monochromatisch, $k_{\parallel} <$ 1.2 Å $^{-1}$)
- 3. Synchrotron (bis keV, k_{\parallel} : mehrere BZ)
 - ► ARPES-Station in Lund/S
 - SX-ARPES am PSI
 - ► ARPES bei Lightsources.org

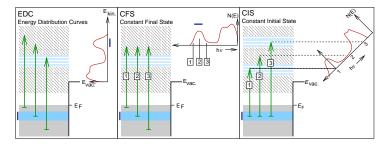
Probenkammer


- analog XPS (Probenkammer, UHV, Sputtereinrichtung etc.)
- ▶ aber: Substrat/Probe orientiert (Goniometer, $\phi + \theta$ variabel) (Überprüfung der Orientierung mittels LEED)

Detektor

analog XPS, i.A. schwenk- und drehbar

① UPS: Messverfahren I

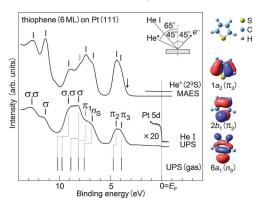

EDC Energy Dispersive Curve (s.o.)

- einfach, mit monochromatische Quelle
- konstante Photonenenergie ('Pfeile gleicher Länge')
- ► I des Spektrums = f(Anfangs- und End-Zustand)
- ▶ durch Zwei-e⁻-Prozesse → breite niederenergetische Flanke von Sekundär-e⁻ (sog. 'Shake-up Peaks')

CES Constant Final State

- ▶ Variation der Photo-Energie (λ variabel, nur am Synchroton)
- ► I-Messung bei konstanter kinetischer e⁻-Energie
- Anregung in nur einen Endzustand, dadurch Einfluß dieses Endzustands eliminiert

① UPS: Messverfahren I

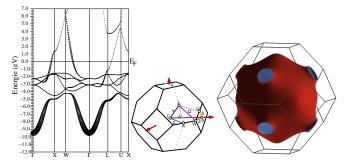


- **EDC** Energy Dispersive Curve
- CFS Constant Final State
- CIS Constant Initial State
 - lacktriangle Variation der Photo-Energie (λ variabel, nur am Synchroton)
 - ▶ $I = \text{Zahl der } e^- \text{ abhängig von } E_{\text{kin.}}$
 - Einfluß des Grundzustands wird eliminiert
 - wichtig für indirekte Bandstruktur-Messung (s.u.)

① UPS: Varianten und Informationen/Anwendungen

- einfache UPS (Winkel-integriert)
 - ▶ → DOS der Valenzzustände der Oberfläche
 - ▶ MOs von Adsorbaten auf Metalloberflächen, Katalyse, usw.
 - ▶ bei Detektion ⊥ zu orientierten Oberflächen → indirekte Bestimmung der Bandstruktur
- ARUPS (winkelaufgelöste UPS)
 - Info über Impuls der e⁻
 - ▶ direkte Bestimmung der (Oberflächen)- Bandstruktur
- PARUPS (Winkel-Polarisationsaufgelöste UPS)
 - auch Informationen zur Polarisation der Elektronen

① UPS: Beispiel I: UP-Spektren zur MO/DOS-Bestimmung



- ► He-I-UPS-Spektrum von ca. 6 Schichten Thiophen auf Pt(111) Oberfläche
- ▶ Vergleich des UPS-Spektrum mit MOs aus DFT-Rechnungen

H. Sato, et al., Phys. Chem. Chem. Phys. 14, 15412-15420 (2012).

Erinnerung: Bandstrukturen und Fermiflächen

- ▶ Bandstruktur: E als f(k bzw. Impuls) $(p = \hbar k)$
- ▶ NFE: Bezug zwischen E und p ($E \propto p^2$ bzw. $p \propto \sqrt{E}$)
 - ightharpoonup zu jeder Eigen-Energie gehört ein Impuls/k: $k=\sqrt{rac{2m_{
 m e}}{\hbar^2}}E$
 - **v** zu jedem Impuls p/k gehört eine Eigen-Energie: $E = \frac{\hbar^2 k^2}{2m}$
- ▶ Beispiel für Bandstruktur (BS) und Fermifläche, von Cu

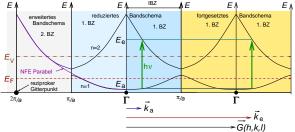
Konsequenzen der Dispersion für die Spektroskopie

- bei Spektroskopie: Energie- (E) und Impuls- (p) Erhalt
- ▶ für UPS-Spektren konkret
- ► Energie-Erhaltung

$$E_{\mathrm{e}}(\vec{k_{\mathrm{e}}}) - E_{\mathrm{a}}(\vec{k_{\mathrm{a}}}) = h \nu_{\mathrm{ph}} - \phi$$

- ▶ mit a: Anfangszustand, e: Endzustand
- ▶ d.h. E des Photo- e^- = E-Differenz der beiden Niveaus (Spektroskopie !)
- ► Impuls-Erhaltung

$$\hbar \vec{k}_{e} - \hbar \vec{k}_{a} = \vec{p}_{ph} + \hbar \vec{G}(h, k, l)$$

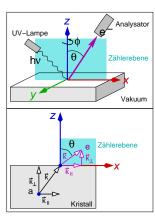

- $\vec{p_{ph}} = \frac{h\nu}{c}$ sehr klein gegen p/k der (Valenz)Elektronen (s.o.) e⁻ $(p = m\nu)$ sehr schwer gegen Photon
 - → Impuls des Photons kann unberücksichtigt bleiben, d.h.:

$$\vec{k_e} - \vec{k_a} = \vec{G}(h, k, l)$$

- ▶ für $\vec{G}(h, k, l) = 0 \mapsto \vec{k_e} = \vec{k_a} \mapsto \text{Impuls der e}^-$ nicht ausreichend groß zum Verlassen der Oberfläche
- $\vec{G}(h, k, l)$: reziproker Gittervektor mit Miller-Indizes h, k, l

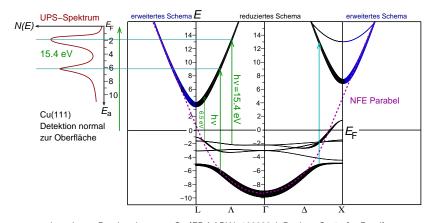
Konsequenzen der Dispersion für die Spektroskopie

- ▶ Impuls-Erhaltung (Forts.): $\vec{k_e} \vec{k_a} = \vec{G}(h, k, l)$
 - wegen Wellencharakter der e⁻: e⁻ im Gitter werden nur dann nicht ausgelöscht ('vernichtet'), wenn λ ein Mehrfaches eines reziproken Gittervektors ist*
 - lacktriangledown vgl. elastische Streuung/Beugung: $\Delta k = ec{k_{\mathrm{e}}} ec{k_{\mathrm{a}}} = ec{G}(h,k,l)$ mit $|ec{k_{\mathrm{e}}}| = |ec{k_{\mathrm{a}}}|$

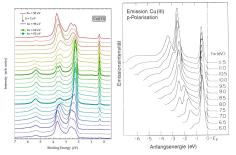


- ▶ im fortgesetzten BS-Schema: k-Vergrösserung um Gittervektoren
- im reduzierten/zurückgefalteten BS-Schema → nur senkrechte Übergänge zwischen Bändern (Gittervektor/Bandindex n geändert) erlaubt **
- ▶ → gilt generell für optische Übergänge (vgl. d/i-Bandlücken von HL)

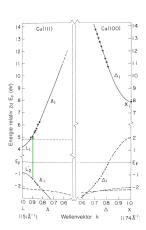
^{*}PE-Prozess mit Beugungsprozess gekoppelt; ** 'Auswahlregel'


Richtungen relativ zur Probenoberfläche, Bestimmung von $\vec{k_{\perp}}$ e

- ► Richtungen relativ zu Oberfläche
 - \parallel parallel zur Oberflächennormale (x, y)
 - \perp senkrecht zur Oberfläche (z)
- Impuls der gebundenen (a) bzw. der Fotoelektronen (e) →
- ▶ Detektion der Photo-e⁻ nur senkrecht zur Oberfläche (θ =0)
 - $|\vec{k_{||e}}| = 0$
 - ▶ nur Komponente $\vec{k_{\perp}}$ e
 - indirekte Bestimmung der Volumenbandstruktur entlang der Oberflächenrichtung
- ▶ Beispiel ↓


$$|\vec{k_{\parallel e}}| = \sqrt{\frac{2m_e}{\hbar^2}E} \sin \theta$$
$$|\vec{k_{\perp e}}| = \sqrt{\frac{2m_e}{\hbar^2}E} \cos \theta$$

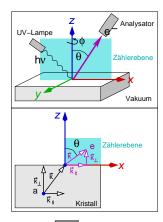
① UPS: Beispiel II: indirekte Messung der Volumen-BS von Metallen


berechnete Bandstruktur von Cu (FP-LAPW, 100000 k-Punkte, Cu 4s fat-Band) schematische Darstellung des Cu(111)-UPS-Spektrums für $E_{\rm ph}=15.4~{\rm eV})$

① UPS: Beispiel II: indirekte Messung der Volumen-BS von Metallen

- CFS-UP-Spektren, Cu(111)-Oberfläche, mit Variation der Photonen-Energie von 6 bis 11 eV
- x-Achse: Anfangsenergie = E_a (Anfangszustand gegen E_F)
 (in der Praxis: am Oberflächen-Peak fixiert)
- ▶ bei ca. 0 eV: unveränderter Peak → Oberflächenzustände
- ▶ zwei weitere Peaks, deren E sich mit E_{ph} ändert (charakteristisch für Volumen-BS (= Dispersion = E = f(k))
- k nicht direkt gemessen, kann aber gefunden werden ⇒

z.B.: $E_a = -1.6 \text{ eV} \mapsto \text{Peak}$ im 6.5 eV Spektrum)

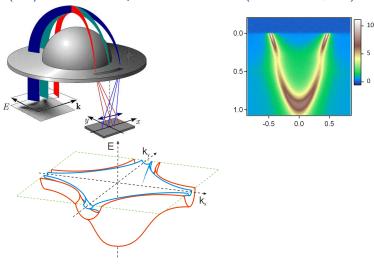

Separation von k (Bestimmung von $\vec{k_{\parallel e}} = \vec{k_{\parallel a}}$)

- ▶ Betrag von \vec{k}_{e} (Länge des violetten Vektors) aus $E_{\text{kin.,e}}$ bekannt: $|\vec{k}| = \sqrt{\frac{2m_{e}}{\hbar^{2}}} E_{kin}$
- bei bekanntem Winkel $\theta \mapsto \vec{k_{\rm e}}$ separierbar in zwei Anteile:

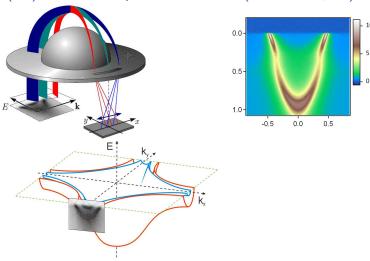
$$|| | |\vec{k_{\parallel e}}| = \sqrt{\frac{2m_e}{\hbar^2}E} \sin \theta$$

$$|| |\vec{k_{\perp e}}| = \sqrt{\frac{2m_e}{\hbar^2}E} \cos \theta$$

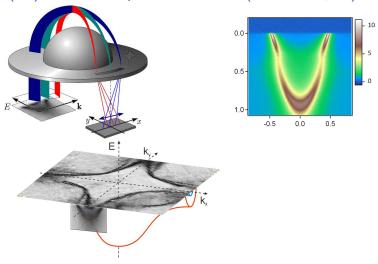
- ▶ aber: $k_{\perp}^{Vakuum,e} < k_{\perp}^{\vec{a}}$ (Impulsänderung beim Austritt aus der Oberfläche, 3-Schritt-Modell)
- ▶ aber: $\vec{k_{\parallel e}} = \vec{k_{\parallel a}}$ bleibt erhalten
- zwei mögliche Anwendungen für
 - A (Quasi-)2D-Kristalle $\vec{k_{\parallel e}}$ ausreichend (keine Dispersion \perp Schicht) komplette 2D Bandstruktur $E=k_{{\rm x},y}$ messbar
 - B 3D-Kristalle → 'Oberflächenbandstruktur'



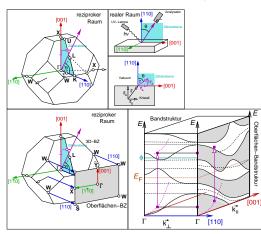
$$|\vec{k}_{\parallel e}| = \sqrt{\frac{2m_e}{\hbar^2}} E \sin \theta$$
$$|\vec{k}_{\perp e}| = \sqrt{\frac{2m_e}{\hbar^2}} E \cos \theta$$


A: (Quasi)-2D Kristalle

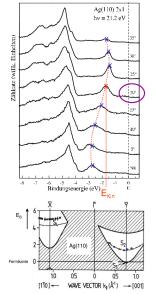
- wichtige/interessante Systeme:
 - viele HT-Supraleiter (Oxido-Cuprate etc.)
 - ► IBSC (Fe-basierte Supraleiter)
 - 'Topological Insulators'
 - Graphen etc.
 - •
- ▶ viele physikalische Eigenschaften von Metallen abhängig von
 - ► E(k) direkt am Ferminiveau
 - Fermiflächen
- ARUPS/ARPES erlaubt die direkte Messung ...
 - ... der 2D-Bandstrukturen der besetzten Zustände
 - ... der Fermiflächen und deren Durchdringung ('Fermi-Surface-Nesting')


A: (AR)UPS inkl. Beispiel für 2D-Kristall (Bi-2212-HT_c-SL)

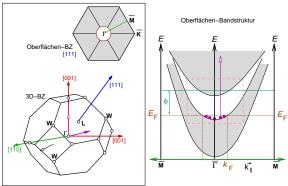
A: (AR)UPS inkl. Beispiel für 2D-Kristall (Bi-2212-HT_c-SL)



A: (AR)UPS inkl. Beispiel für 2D-Kristall (Bi-2212-HT_c-SL)


B: Oberflächenbandstruktur von 3D-Kristallen

- für Oberflächenzustände \mapsto nur x, y-Ebene translationssymmetrisch
- ▶ (s.o. bei Cu \perp : keine Abhängigkeit der Signale von $h\nu$ der Quelle)
- ► \mapsto Bandstruktur auf x, y-Ebene beschränkt (keine Anteile $k_z = k_\perp$)
- Projektion der Volumenbandstruktur auf Richtung der Oberfläche
- rechts: graue Bereiche = projezierte Volumen-BS


B: Auswertung von ARUPS-Spektren von 3D-Kristallen

- Spektren unter vielen Winkeln (θ, ϕ) , z.B. mit konstanter Photoenergie aufnehmen z.B. Ag(110)-Spektren:
- Lage der Maxima nach Energie- und Impulssatz auswerten
 - \triangleright $E_{kin} = h\nu E_B \phi$
 - (E_B : Bindungsenergie, ϕ : Austrittsarbeit)
 - ▶ aus Winkel θ und E_{kin} k_{\parallel} (=[001]-Richtung) nach $k_{\parallel} = \sqrt{\frac{2m_e}{\hbar^2}} E_{kin} \sin \theta$ berechnen
- $ightharpoonup \mapsto E_B$ und Impuls des Anfangszustands
- in Oberflächenbandstruktur eintragen

B: Messung der Oberflächenbandstruktur von 3D-Kristallen

- ▶ Oberflächenzustände ...
 - ... an Orten in $k_{x,y}$, wo keine projezierten Volumen-Bänder vorhanden sind (= weisse Bereiche)
 - ► ... aber nahe an Volumen-Bändern → indirekte Bestimmung der Volumenbandstruktur
 - ... nur unterhalb E_F
- schematisch für Cu(111)

Wiederholung Spektroskopie, Einordnung der Methoder Spektroskopie der Elektronenhülle: Übersicht

Rumpfniveau-Spektroskopie

Übersich

- ① XPS: Röntgen-Photoelektronen-Spektroskopie
- ② AES: Auger-Elektronen-Spektroskopie

Valenzelektronen-Spektroskopie

Ubersich[†]

- UPS: Ultraviolett-Photoelektronen-Spektroskopie
- ② EELS: 'Energy-Electron-Loss'-Spektroskopie
- ③ IPE: Inverse Photoelektronen-Spektroskopie

Zusammenfassung

② EELS: 'Energy-Electron-Loss'-Spektroskopie

... entfällt aus Zeitgründen ...

Wiederholung Spektroskopie, Einordnung der Methoden Spektroskopie der Elektronenhülle: Übersicht

Rumpfniveau-Spektroskopie

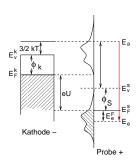
Übersich

- ① XPS: Röntgen-Photoelektronen-Spektroskopie
- ② AES: Auger-Elektronen-Spektroskopie

Valenzelektronen-Spektroskopie

Ubersich[†]

- ① UPS: Ultraviolett-Photoelektronen-Spektroskopie
- ② EELS: 'Energy-Electron-Loss'-Spektroskopie
- ③ IPE: Inverse Photoelektronen-Spektroskopie

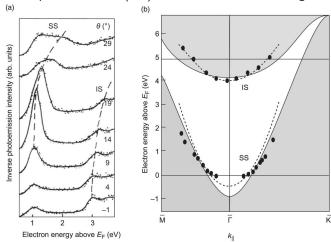

Zusammenfassung

③ IPE: Inverse Photoelektronen-Spektroskopie: Prinzip

- umgekehrter Prozess wie bei UPS
- UPS Anregung mit UV Detektion I(PE) als f(UV-Energie)
- IPE Anregung durch monochromatische e⁻ Detektion der Bremsstrahlung (im UV)
 - aus den E-Beiträgen:

$$h
u = E_a - E_e = E_a - (\phi_K + \frac{3}{2}kT + eU) - E_e^F$$

- mit:
 - hν: Energie der Bremsstrahlung (langer roter Pfeil)
 - ► E_a: Anfangsenergie (hier wird DOS gemessen!!)
 - ► E_e: Energie des Endzustands
 - ϕ_{κ} : Austrittsarbeit der Kathode (bekannt)
 - ► eU: Beschleunigungsspannung der e⁻
 - \triangleright E_a^F : Endzustandsenergie der e^- (bezogen auf E_F)
- ► → DOS unbesetzter Zustände wird faßt
- ▶ wie bei UPS auch Impuls-/Winkel-aufgelöst (s.u.)



3 IPE: Messmethoden

- Messmöglichkeiten
 - 1. bei festem eU: $h\nu$ spektral aufgelöst messen
 - 2. bei festem ν : U durchfahren
- praktisch nur 2, da keine einfachen Monochromatoren im fernen UV
- ▶ → BIS: Bremsstrahlungs-Isochromaten-Spektroskopie
 - 1. Variation der Beschleunigungsspannung U der e^-
 - 2. Detektion bei fester Photonenfrequenz ν
- ► Detektoren (Zählrohr)
 - ► CaF₂ als Fenstermaterial: nur unter 10 eV transparent
 - ightharpoonup I $_2$ als Füllgas: erst ab 9.5 eV Ionisation \mapsto Bandpaß mit Zentrum bei 9.7 eV

③ AR-IPE: Beispiel Cu(111)-Oberfläche

- Winkelaufgelöste IPE-Spektren
- ightharpoonup Bestimmung der Oberflächenbandstruktur oberhalb von E_F
- ► AR-IPS-Spektren einer Cu(111)-Oberfläche, inkl. Auswertung

$\bigcirc + \bigcirc : (AR)UPS+IPE: Zusammenfassung$

UPS Spektroskopie von Zuständen unterhalb E_F

- ▶ DOS besetzter Zustände ohne spezielle Winkelauflösung (E-Erhaltung)
- ▶ indirekte Bestimmung der Volumenbandstruktur ⊥ zur Oberfläche
- bei Winkelauflösung (AR):
 - 2D-Bandstruktur von Quasi(2D)-Systemen
 - bei 3D-Kristallen direkte Messung der Grenzen der Volumenbandstruktur
- EDC und CFS: nur besetzte Zustände messbar
- CIS: Faltung besetzt/unbesetzt → auch indirekte Info über unbesetzte
 Zustände

IPE Spektroskopie von Zuständen oberhalb E_F

- ▶ wie bei UPS auch k/Winkel-aufgelöst, \mapsto BS bestimmbar
- ▶ häufig aber nur zur Messung von DOS oberhalb E_F

$\mathsf{UPS} + \mathsf{IPE}$ zusammen \mapsto komplette DOS

① + ③: (AR)UPS und IPE: Literatur und Links

- ▶ Bücher
 - D. Haarer, H. W. Spiess: Spektroskopie amorpher und kristalliner Festkörper, Steinkopff, Darmstadt, 1995
- ► Links
 - ▶ Photoemission, mit Video von Quantum-made-simple
 - ► Playlist von Quantum-made-simple
- Paper
 - •

Wiederholung Spektroskopie, Einordnung der Methoden Spektroskopie der Elektronenhülle: Übersicht

Rumpfniveau-Spektroskopie

Übersicht

- ① XPS: Röntgen-Photoelektronen-Spektroskopie
- ② AES: Auger-Elektronen-Spektroskopie
- $ilde{ text{@}}$ RFA (Röntgenfluoreszenz-Analyse)/XANES (entfällt)

Valenzelektronen-Spektroskopie

Übersich

- ① UPS: Ultraviolett-Photoelektronen-Spektroskopie
- ② EELS: 'Energy-Electron-Loss'-Spektroskopie
- ③ IPE: Inverse Photoelektronen-Spektroskopie

Zusammenfassung

Wiederholung Spektroskopie, Einordnung der Methoder Spektroskopie der Elektronenhülle: Übersicht

Rumpfniveau-Spektroskopie

Übersich

- ① XPS: Röntgen-Photoelektronen-Spektroskopie
- ② AES: Auger-Elektronen-Spektroskopie
- $ilde{ text{@}}$ RFA (Röntgenfluoreszenz-Analyse)/XANES (entfällt)

Valenzelektronen-Spektroskopie

Ubersicht

- ① UPS: Ultraviolett-Photoelektronen-Spektroskopie
- ② EELS: 'Energy-Electron-Loss'-Spektroskopie
- ③ IPE: Inverse Photoelektronen-Spektroskopie

Zusammenfassung