Anorganische Pigmente: Ein historischer Blick

2. Themenbereich: Farbe und Kristalle

AGP-Versuche 2.1, 2.21, 2.22, 2.23, 2.25, 4.51, 4.83

AGP-Begleitvorlesung, 11.2012, C. Röhr

 $\label{eq:Anorganische Pigmente: Ein historischer Blick} Anorganische Pigmente: Ein historischer Blick$

Einleitung

Die Anfänge: Höhlenmalerei

Frühe Hochkulturen

Griechen und Römer

Mittelalter (Malerei)

Pigmente als industrielle Produkte

Klassische Pigmente heute

Literatur und Links

Anorganische Pigmente: Ein historischer Blick Linleitung

Einleitung

Die Anfänge: Höhlenmalere

Frühe Hochkulturen

Griechen und Römer

Mittelalter (Malerei)

Pigmente als industrielle Produkte

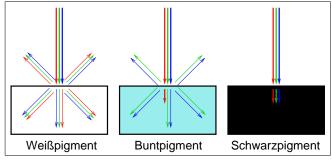
Klassische Pigmente heute

Literatur und Links

Einleitung

- pigmentum (lat.): Malerfarbe
- Definition (nach DIN 55 944):
 Eine aus Teilchen bestehende, im Anwendungssystem unlösliche Substanz, die als Farbmittel (farbgebende Substanz) oder ... oder ... verwendet wird.

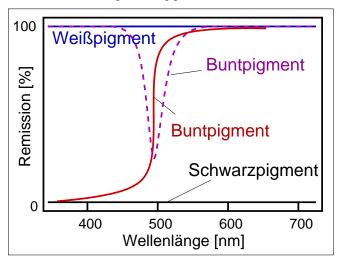
Einleitung

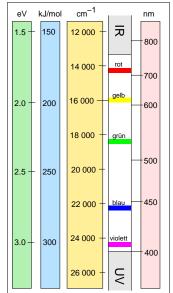

- pigmentum (lat.): Malerfarbe
- Definition (nach DIN 55 944):
 Eine aus Teilchen bestehende, im Anwendungssystem unlösliche Substanz, die als Farbmittel (farbgebende Substanz) oder ... oder ... verwendet wird.
- ▶ Pigment ...
 - ► Feststoff (Kristalle, polykristalline Pulver, Aggregate, Agglomerate)
 - Anwendungssystem: Öl, Lack,
 - neben Farbmitteln auch Funktionspigmente (Magnetpigmente, Korrosionsschutzpigmente)

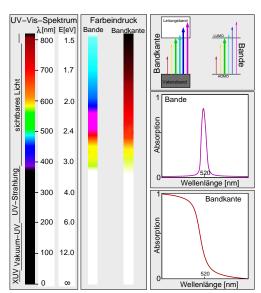
Einleitung

- pigmentum (lat.): Malerfarbe
- Definition (nach DIN 55 944):
 Eine aus Teilchen bestehende, im Anwendungssystem unlösliche Substanz, die als Farbmittel (farbgebende Substanz) oder ... oder ... verwendet wird.
- ▶ Pigment ...
 - ► Feststoff (Kristalle, polykristalline Pulver, Aggregate, Agglomerate)
 - Anwendungssystem: Öl, Lack,
 - neben Farbmitteln auch Funktionspigmente (Magnetpigmente, Korrosionsschutzpigmente)
- Bezeichnung/Klassifizierung von Pigmenten:
 - chemische Zusammensetzung (z.B. Chromatpigmente, TiO₂-Pigmente)
 - optische Wirkung (bei Farbpigmenten)
 - Buntpigmente
 - Weißpigmente
 - Schwarzpigmente
 - Glanzpigmente (Metalleffektpigmente, Perlglanzpigmente)
 - Aufdampfschichten
 - ► Lumineszenzpigmente (Fluoreszenz- und Phosphoreszenz-Pigmente)

Einteilung der Farbmittel

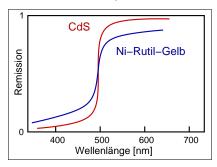

→ Einteilung nach koloristischen Gesichtspunkten (nach DIN 55 944)


- ► Weißpigmente: nichtselektive Streuung
- ▶ Buntpigmente: Absorptionspigmente → subtraktive Farbmischung
- ► Schwarzpigmente: nichtselektive Absorption (z.B. Ruß: 99%)


Schwarz/Weiß/Bunt?

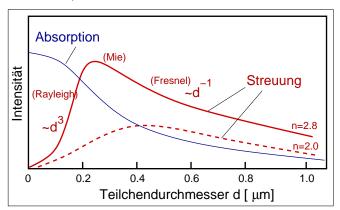
Farbeindruck: Wellenlängenabhängigkeit der Remission

Energien – Absoprtionsfarben (Wdh. UV/vis-Seminar)



Buntpigmente

- bestimmter Farbton
- hohes Deckvermögen
- hohe Sättigung (Buntheit)
- ▶ hohe Farbstärke (Farbreinheit → scharfe Absorptionskanten)



Teilchengröße: Absorption/Streuung

- Absorption = f(Pigmentvolumenkonzentration, Teilchengröße)
- Streuung = f(Pigmentvolumenkonzentration, Teilchengröße, Brechungsindex)

Anorganische Pigmente: Ein historischer Blick Leinleitung

Ursachen der Farbigkeit

 \mapsto für Pigmente wichtige elektronische Prozesse bei der selektiven Lichtabsorption:

- \mapsto für Pigmente wichtige elektronische Prozesse bei der selektiven Lichtabsorption:
 - ▶ d-d-Übergänge in Übergangsmetallverbindungen mit offenen d-Schalen (z.B. Co(II)-Salze, Cu(II)-Salze, Cr₂O₃) (aber: Laporte- + ev. Paritäts-Verbot)

- \mapsto für Pigmente wichtige elektronische Prozesse bei der selektiven Lichtabsorption:
 - d-d-Übergänge in Übergangsmetallverbindungen mit offenen d-Schalen (z.B. Co(II)-Salze, Cu(II)-Salze, Cr₂O₃) (aber: Laporte- + ev. Paritäts-Verbot)
 - Charge-Transfer-Übergänge
 - ► Ligand⇒Metall (LMCT) (z.B. [CrO₄]²⁻)
 - Metall⇒Metall (MMCT) (Intervalenzübergänge, z.B. Fe₃O₄, Berliner Blau)
 - ► (Metall \Rightarrow Ligand) (z.B. [Ru(bipy)₃]ⁿ⁻-Komplexe)
 - ► (Ligand⇒Ligand) (Interligand-Übergänge z.B. Ni-DADO, Phthalocyanine)

- \mapsto für Pigmente wichtige elektronische Prozesse bei der selektiven Lichtabsorption:
 - d-d-Übergänge in Übergangsmetallverbindungen mit offenen d-Schalen (z.B. Co(II)-Salze, Cu(II)-Salze, Cr₂O₃) (aber: Laporte- + ev. Paritäts-Verbot)
 - Charge-Transfer-Übergänge
 - ► Ligand⇒Metall (LMCT) (z.B. [CrO₄]²⁻)
 - ► Metall⇒Metall (MMCT) (Intervalenzübergänge, z.B. Fe₃O₄, Berliner Blau)
 - ► (Metall \Rightarrow Ligand) (z.B. [Ru(bipy)₃]ⁿ⁻-Komplexe)
 - ► (Ligand⇒Ligand) (Interligand-Übergänge z.B. Ni-DADO, Phthalocyanine)
 - Radikalionen im Festkörper (z.B. Ultramarine)

- \mapsto für Pigmente wichtige elektronische Prozesse bei der selektiven Lichtabsorption:
 - ▶ d-d-Übergänge in Übergangsmetallverbindungen mit offenen d-Schalen (z.B. Co(II)-Salze, Cu(II)-Salze, Cr₂O₃) (aber: Laporte- + ev. Paritäts-Verbot)
 - Charge-Transfer-Übergänge
 - Ligand⇒Metall (LMCT) (z.B. [CrO₄]^{2−})
 - Metall⇒Metall (MMCT) (Intervalenzübergänge, z.B. Fe₃O₄, Berliner Blau)
 - ► (Metall \Rightarrow Ligand) (z.B. [Ru(bipy)₃]ⁿ⁻-Komplexe)
 - ► (Ligand⇒Ligand) (Interligand-Übergänge z.B. Ni-DADO, Phthalocyanine)
 - ▶ Radikalionen im Festkörper (z.B. Ultramarine)
 - Valenzband (VB) ⇒ Leitungsband (LB) Übergänge in Festkörpern (k=0)
 - ▶ bei Bandlücken im sichtbaren Bereich (1.6-3.1 eV) (z.B. CdS: 2.6 eV)
 - ▶ entspricht L⇒M-CT im isolierten Molekülkomplex

- \mapsto für Pigmente wichtige elektronische Prozesse bei der selektiven Lichtabsorption:
 - ▶ d-d-Übergänge in Übergangsmetallverbindungen mit offenen d-Schalen (z.B. Co(II)-Salze, Cu(II)-Salze, Cr₂O₃) (aber: Laporte- + ev. Paritäts-Verbot)
 - Charge-Transfer-Übergänge
 - ► Ligand⇒Metall (LMCT) (z.B. [CrO₄]²⁻)
 - Metall⇒Metall (MMCT) (Intervalenzübergänge, z.B. Fe₃O₄, Berliner Blau)
 - ► (Metall \Rightarrow Ligand) (z.B. [Ru(bipy)₃]ⁿ⁻-Komplexe)
 - ► (Ligand⇒Ligand) (Interligand-Übergänge z.B. Ni-DADO, Phthalocyanine)
 - ▶ Radikalionen im Festkörper (z.B. Ultramarine)
 - Valenzband (VB) ⇒ Leitungsband (LB) Übergänge in Festkörpern (k=0)
 - ▶ bei Bandlücken im sichtbaren Bereich (1.6-3.1 eV) (z.B. CdS: 2.6 eV)
 - ► entspricht L⇒M-CT im isolierten Molekülkomplex
 - Donatorniveaus eines Übergangsmetalls⇒Leitungsband des Wirtsgitters (z.B. NiTiO₃)

Einleitung

Die Anfänge: Höhlenmalerei

Frühe Hochkulturen

Griechen und Römer

Mittelalter (Malerei)

Pigmente als industrielle Produkte

Klassische Pigmente heute

Literatur und Links

Die Anfänge: Höhlenmalereien

▶ Höhlenmalereien der Jungsteinzeit (ca. 30 000 v. Chr.) als älteste Zeugnisse für die Verwendung von Pigmenten und Bindemitteln

Die Anfänge: Höhlenmalereien

- Höhlenmalereien der Jungsteinzeit (ca. 30 000 v. Chr.) als älteste Zeugnisse für die Verwendung von Pigmenten und Bindemitteln
- gut erhaltene Malereien z.B. in Nordostspanien und Südwestfrankreich (30 000 - 15 000 v. Chr.)
 - La Grotte Chauvet (33 500 v. Chr., entdeckt 1994)
 - ▶ La Grotte Cosquer (29 000 20 000 v. Chr.; Eingang heute unter der Wasseroberfläche)
 - Pinguine
 - Pferd
 - ► Bison
 - La Grotte Lascaux (19 000 v. Chr., entdeckt 1940)
 - ▶ Pferd
 - ► Altamira (16 000 v. Chr., entdeckt 1880)
 - ▶ Bison

Die Anfänge: Höhlenmalereien

- Höhlenmalereien der Jungsteinzeit (ca. 30 000 v. Chr.) als älteste Zeugnisse für die Verwendung von Pigmenten und Bindemitteln
- gut erhaltene Malereien z.B. in Nordostspanien und Südwestfrankreich (30 000 - 15 000 v. Chr.)
 - La Grotte Chauvet (33 500 v. Chr., entdeckt 1994)
 - La Grotte Cosquer (29 000 20 000 v. Chr.; Eingang heute unter der Wasseroberfläche)
 - Pinguine
 - ► Pferd
 - ▶ Bison
 - La Grotte Lascaux (19 000 v. Chr., entdeckt 1940)
 - ▶ Pferd
 - Altamira (16 000 v. Chr., entdeckt 1880)
 - ► Bison
- erste Zeugnisse der bergmännischen Gewinnung natürlicher Pigmente
 - z.B. Hämatitbergbau im Südschwarzwald (7 000 v. Chr.)

Die Anfänge: Höhlenmalereien

- Höhlenmalereien der Jungsteinzeit (ca. 30 000 v. Chr.) als älteste Zeugnisse für die Verwendung von Pigmenten und Bindemitteln
- gut erhaltene Malereien z.B. in Nordostspanien und Südwestfrankreich (30 000 - 15 000 v. Chr.)
 - La Grotte Chauvet (33 500 v. Chr., entdeckt 1994)
 - ▶ La Grotte Cosquer (29 000 20 000 v. Chr.; Eingang heute unter der Wasseroberfläche)
 - Pinguine
 - ► Pferd
 - ▶ Bison
 - La Grotte Lascaux (19 000 v. Chr., entdeckt 1940)
 - ▶ Pferd
 - Altamira (16 000 v. Chr., entdeckt 1880)
 - ▶ Bison
- erste Zeugnisse der bergmännischen Gewinnung natürlicher Pigmente
 - z.B. Hämatitbergbau im Südschwarzwald (7 000 v. Chr.)
- verwendete Pigmente: alle natürlichen Ursprungs

- schwarz
 - ► Graphit (Bild, Struktur)
 - Kohle von Knochen, Horn und Zahnbein
 - Holzkohle von Wacholder
 - ▶ moch heute wichtigstes Schwarzpigment und nach Tonnage drittwichtigstes Pigment überhaupt
 - gemischtvalente Mn- und Fe-Oxide (Spinell-(MgAl₂O₄)- Struktur)
 - ► Mn₃O₄ (Hausmannit, ein Normalspinell; Bild Mineral)
 - ► Fe₃O₄ (Magnetit, Inversspinell) Bild Mineral

- schwarz
 - Graphit (Bild, Struktur)
 - Kohle von Knochen, Horn und Zahnbein
 - Holzkohle von Wacholder
 - ▶ moch heute wichtigstes Schwarzpigment und nach Tonnage drittwichtigstes Pigment überhaupt
 - gemischtvalente Mn- und Fe-Oxide (Spinell-(MgAl₂O₄)- Struktur)
 - ► Mn₃O₄ (Hausmannit, ein Normalspinell; Bild Mineral)
 - ► Fe₃O₄ (Magnetit, Inversspinell) Bild Mineral

- ▶ weiß (selten)
 - ► Kreide (CaCO₃) (Foto)
 - ► Gips (CaSO₄ · 2 H₂O) (Foto)

Verwendete Pigmente II

► Erdfarben (gelb, rot, braun): Eisen(III)-Oxide/Hydroxide

- ► Erdfarben (gelb, rot, braun): Eisen(III)-Oxide/Hydroxide
 - Reinstoffe:
 - α-Fe₂O₃ (rot, Hämatit, Korund-Struktur)
 - γ-Fe₂O₃ (braun-schwarz, metastabil, Maghemit, Defekt-Spinell-Struktur)
 - α-FeO(OH) (gelb, Goethit)
 - $ightharpoonup \gamma$ -FeO(OH) (orange, Lepidokrokit)

- Erdfarben (gelb, rot, braun): Eisen(III)-Oxide/Hydroxide
 - Reinstoffe:
 - α-Fe₂O₃ (rot, Hämatit, Korund-Struktur)
 - γ-Fe₂O₃ (braun-schwarz, metastabil, Maghemit, Defekt-Spinell-Struktur)
 - α-FeO(OH) (gelb, Goethit)
 - γ-FeO(OH) (orange, Lepidokrokit)

- natürliche Pigmente:
 - rot: Persischrot, Spanischrot, Venezianischrot, Pompejanischrot, Rötel, roter Ocker, Siderit, Siene (bis zu 95 % reines α-Fe₂O₃) (Foto, Mineral)
 - gelb: Limonit, gelber Ocker (bis zu 50 % γ-FeO(OH))
 - braun: Umbra (mit 5-20 % MnO₂), Siderit (Mischung aus Hämatit, Goethit und Magnetit)

- Erdfarben (gelb, rot, braun): Eisen(III)-Oxide/Hydroxide
 - Reinstoffe:
 - α-Fe₂O₃ (rot, Hämatit, Korund-Struktur)
 - γ-Fe₂O₃ (braun-schwarz, metastabil, Maghemit, Defekt-Spinell-Struktur)
 - α-FeO(OH) (gelb, Goethit)
 - γ-FeO(OH) (orange, Lepidokrokit)

- natürliche Pigmente:
 - rot: Persischrot, Spanischrot, Venezianischrot, Pompejanischrot, Rötel, roter Ocker, Siderit, Siene (bis zu 95 % reines α-Fe₂O₃) (Foto, Mineral)
 - gelb: Limonit, gelber Ocker (bis zu 50 % γ-FeO(OH))
 - braun: Umbra (mit 5-20 % MnO₂), Siderit (Mischung aus Hämatit, Goethit und Magnetit)
- ► Farbigkeit durch L⇒M-CT (Metallreduktionsbanden)

- ► Erdfarben (gelb, rot, braun): Eisen(III)-Oxide/Hydroxide
 - Reinstoffe:
 - α-Fe₂O₃ (rot, Hämatit, Korund-Struktur)
 - γ-Fe₂O₃ (braun-schwarz, metastabil, Maghemit, Defekt-Spinell-Struktur)
 - α-FeO(OH) (gelb, Goethit)
 - γ-FeO(OH) (orange, Lepidokrokit)

- natürliche Pigmente:
 - rot: Persischrot, Spanischrot, Venezianischrot, Pompejanischrot, Rötel, roter Ocker, Siderit, Siene (bis zu 95 % reines α-Fe₂O₃) (Foto, Mineral)
 - ▶ gelb: Limonit, gelber Ocker (bis zu 50 % γ-FeO(OH))
 - braun: Umbra (mit 5-20 % MnO₂), Siderit (Mischung aus Hämatit, Goethit und Magnetit)
- ► Farbigkeit durch L⇒M-CT (Metallreduktionsbanden)
- ▶ noch heute die wichtigsten und auch billigsten Buntpigmente

- ► Erdfarben (gelb, rot, braun): Eisen(III)-Oxide/Hydroxide
 - Reinstoffe:
 - α-Fe₂O₃ (rot, Hämatit, Korund-Struktur)
 - γ-Fe₂O₃ (braun-schwarz, metastabil, Maghemit, Defekt-Spinell-Struktur)
 - α-FeO(OH) (gelb, Goethit)
 - γ-FeO(OH) (orange, Lepidokrokit)

- natürliche Pigmente:
 - rot: Persischrot, Spanischrot, Venezianischrot, Pompejanischrot, Rötel, roter Ocker, Siderit, Siene (bis zu 95 % reines α-Fe₂O₃) (Foto, Mineral)
 - ▶ gelb: Limonit, gelber Ocker (bis zu 50 % γ-FeO(OH))
 - braun: Umbra (mit 5-20 % MnO₂), Siderit (Mischung aus Hämatit, Goethit und Magnetit)
- ► Farbigkeit durch L⇒M-CT (Metallreduktionsbanden)
- noch heute die wichtigsten und auch billigsten Buntpigmente
- > synthetisch wg. Konstanz der koloristischen Eigenschaften

- ► Erdfarben (gelb, rot, braun): Eisen(III)-Oxide/Hydroxide
 - Reinstoffe:
 - α-Fe₂O₃ (rot, Hämatit, Korund-Struktur)
 - γ-Fe₂O₃ (braun-schwarz, metastabil, Maghemit, Defekt-Spinell-Struktur)
 - α-FeO(OH) (gelb, Goethit)
 - γ-FeO(OH) (orange, Lepidokrokit)

- ▶ natürliche Pigmente:
 - rot: Persischrot, Spanischrot, Venezianischrot, Pompejanischrot, Rötel, roter Ocker, Siderit, Siene (bis zu 95 % reines α-Fe₂O₃) (Foto, Mineral)
 - gelb: Limonit, gelber Ocker (bis zu 50 % γ-FeO(OH))
 - braun: Umbra (mit 5-20 % MnO₂), Siderit (Mischung aus Hämatit, Goethit und Magnetit)
- ► Farbigkeit durch L⇒M-CT (Metallreduktionsbanden)
- ▶ noch heute die wichtigsten und auch billigsten Buntpigmente
- > synthetisch wg. Konstanz der koloristischen Eigenschaften
- optimales Deckvermögen bei einer Teilchengröße von 0.2 μ m (200 nm)

- ► Erdfarben (gelb, rot, braun): Eisen(III)-Oxide/Hydroxide
 - Reinstoffe:
 - α-Fe₂O₃ (rot, Hämatit, Korund-Struktur)
 - γ-Fe₂O₃ (braun-schwarz, metastabil, Maghemit, Defekt-Spinell-Struktur)
 - α-FeO(OH) (gelb, Goethit)
 - γ-FeO(OH) (orange, Lepidokrokit)

- natürliche Pigmente:
 - rot: Persischrot, Spanischrot, Venezianischrot, Pompejanischrot, Rötel, roter Ocker, Siderit, Siene (bis zu 95 % reines α-Fe₂O₃) (Foto, Mineral)
 - gelb: Limonit, gelber Ocker (bis zu 50 % γ-FeO(OH))
 - braun: Umbra (mit 5-20 % MnO₂), Siderit (Mischung aus Hämatit, Goethit und Magnetit)
- ► Farbigkeit durch L⇒M-CT (Metallreduktionsbanden)
- ▶ noch heute die wichtigsten und auch billigsten Buntpigmente
- > synthetisch wg. Konstanz der koloristischen Eigenschaften
- ightharpoonup optimales Deckvermögen bei einer Teilchengröße von 0.2 μ m (200 nm)
- ▶ Verwendung für Baustoffeinfärbungen (z.B. Betonsteine, Dachpfannen usw.)

Techniken und Funktion

- verwendete Bindemittel
 - Kalk und Wasser
 - pflanzliche Harze
 - ▶ Blut
- ► Techniken und Werkzeuge
 - ▶ Werkzeuge: Finger und Pinsel aus Tierhaaren
 - Versprühtechnik
 - Schablonentechnik (z.B. Handnegative)
 - Verwischtechnik (in Chauvet)
- kultische und religiöse Bedeutung
- ▶ KEINE grünen und blauen Pigmente

Anorganische Pigmente: Ein historischer Blick

Frühe Hochkulturen

Einleitung

Die Anfänge: Höhlenmalere

Frühe Hochkulturen

Griechen und Römer

Mittelalter (Malerei

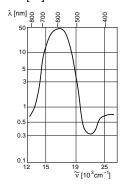
Pigmente als industrielle Produkte

Klassische Pigmente heute

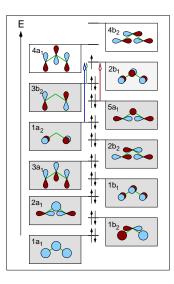
Literatur und Links

Frühe Hochkulturen

- frühe Hochkulturen:
 - ▶ 3500 3000 v.Chr.: Mesopotamien, Ägypten, Indien
 - ▶ 2500 v. Chr.: Kreta, Troja, Griechenland
- gezielte Gewinnung von Pigmenten:
 - Aufbereitung von Mineralien
 - Lapis-Lazuli
 - Malachit (Cu₂(OH)₂CO₃) und Azurit (Cu₃(OH)₂(CO₃)₂)
 - Zinnober (HgS)
 - synthetische Pigmente
 - ► Ägyptisch Blau (CaCu[Si₄O₁₀]) seit ca. 2500 v. Chr.
 - Co(II)-Pigmente: Thenard's Blau (CoAl₂O₄, seit ca. 1500 v. Chr.) und Smalte (Co(II)-Gläser)
 - Nebenprodukte der Erzverhüttung
- ▶ → gesamter Farbkreis verfügbar, aber blau und grün sehr wertvoll!!


Aufbereitete Mineralien I: Lapis-Lazuli

- Fotografien des Minerals: Foto
- Gewinnung/Bedeutung
 - ► früher: natürliche Vorkommen in Afghanistan (sehr wertvoll!)
 - ca. 1825: erste synthetische Ultramarine (s.u.)
 - bis heute wichtiges Pigmente für Kunststoffe, Lacke, Farben, Papier, Kosmetik
- ► Chemische Zusammensetzung: $Na_4[Al_3Si_3O_{12}][S_x]$ (x = 2, 3, 4)
- Struktur
 - ► Alumosilicat-Teilverband [Al₃Si₃O₁₂]³⁻ (Darstellung mit SiO₄-Tetraedern)
 - \triangleright β -Käfige (Si-Atome als Polyederecken)
- ► Farbträger: Radikalanionen [S_x]⁻ ↓

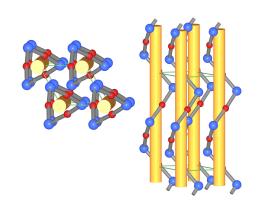

Aufbereitete Mineralien I: Lapis-Lazuli (Forts.)

- ♦ Farbträger: Radikal-Anionen [S_x]⁻
- ♦ alle Übergänge Spin-erlaubt
- ► [S₂]⁻: gelbgrün
- ▶ [S₃]⁻: blau
- ► [S₄]⁻: rot-violett

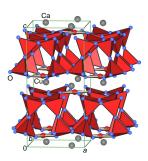
mögliche Übergänge:

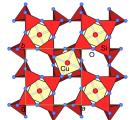
- ²a₁ → ²b₁(aber: sehr kleines Übergangsmoment)
- $^{2}a_{2} \mapsto ^{2}b_{1}$ (stark, 17 000 cm⁻¹ = 600 nm)

Aufbereitete Mineralien II: Malachit, Azurit


► Farbträger: Cu(II) (d^9 , Jahn-Teller, ${}^2\mathsf{E_g} \longrightarrow {}^2\mathsf{T}_{2\mathsf{g}}$, 12 500 cm $^{-1}$)

- ► Malachit: Cu₂(OH)₂CO₃ (basisches Kupfercarbonat)
 - ▶ Abbau bei Ägyptern am Berg Sinai → Kupfergewinnung
 - Verwendung für Wandmalereien, Schminke
- Azurit: Cu₃(OH)₂(CO₃)₂
 - ▶ Struktur
- ▶ später weitere grüne Cu(II)-Pigmente (z.B. für Malerfarben)
 - ► Grünspan (Cu-Acetat: Cu[CH₃CO₂]₂)
 - Scheele'sches Grün (Cu[AsO₂]₂·Cu(OH)₂)
 - ► Schweinfurter Grün (Cu₄[AsO₂]₆[CH₃CO₂]₂)
- Nachteil: Bildung von schwarzem CuS


Aufbereitete Mineralien III: Zinnober (HgS)


- ► Foto des Minerals
- ▶ Struktur α -HgS \Rightarrow
- natürliche Vorkommen: z.B. in Spanien
- ► Farbigkeit durch Band-Band-Übergänge (Bandlücke: 2.1 eV, 580 nm)
- Nachteile:
 - ► Hg-haltig
 - Phasenumwandlung in schwarzes β-HgS (Zinkblende-Struktur, Metacinnabarit)

Synthetische Pigmente I: Ägyptisch Blau

- Beispiele
 - ► Hippo (Ägypten, 2000 v.Chr.)
 - Nofretete (ca. 1350 v. Chr.)
- ► Zusammensetzung: CaCu[Si₄O₁₀]
- ► Farbträger: Cu(II)
- ▶ Struktur ⇒
- Synthese
 - ca. 2500 v. Chr. in Ägypten
 - durch Glühen von CaO (Kalk), SiO₂ (Quarz) und CuO im elektrischen Ofen

Synthetische Pigmente II: Co(II)-Pigmente

- ► Farbträger: Co(II) (HS-d⁷, in tetraedrischer Koordination)
- ▶ d \Rightarrow d-Übergänge; 13 000 cm⁻¹, ${}^{4}A_{2} \Rightarrow {}^{4}T_{1}$)
- ► Thenard's Blau: CoAl₂O₄
 - Struktur: Normal-Spinell, Co(II) in Tetraederlücken
 - erste Synthese: 1500 v. Chr. in Ägypten
 - ▶ in China ab 600 n. Chr. zur Färbung von Tonwaren (Porzellan)
 - 1802 durch Thenards wiederentdeckt
 - bis heute wichtiges Pigmente für Keramik (Zwiebelmuster)
 - ► Synthese: Glühen von Al(OH)₃ und Co(NO₃)₂ auf Magnesiarinne

- ▶ Smalte: mit Co(II)-Salzen blau gefärbtes Glas
 - ▶ Synthese: aus Quarzsand, Pottasche und Co-Oxid bei ca. 1150°C
 - ca. 100 v. Chr.: römisch-ägyptische Fayencen
 - ca. 1600 n. Chr.: Verwendung als Pigment für Ölfarben
 - Nachteil: geringe Deckkraft, grobkörnig

Anorganische Pigmente: Ein historischer Blick

Griechen und Römer

Einleitung

Die Anfänge: Höhlenmalere

Frühe Hochkulturen

Griechen und Römer

Mittelalter (Malerei)

Pigmente als industrielle Produkte

Klassische Pigmente heute

Literatur und Links

Griechen und Römer (± 0 n/v. Chr.)

- → Bedeutung der griechischen und römischen Pigmente
 - gute schriftliche Dokumentation
 - zahlreiche archäologische Funde
 - große Ausdehnung des römischen Reiches
 - umfangreicher Handel mit Pigmenten
 - Ultramarine aus Afghanistan
 - ► Indigo aus Indien
 - Zinnober aus Spanien
 - nur einige neue Pigmente (Pb-, As- und Cu-Salze als Beiprodukte der Metallverarbeitung)
 - neue Farbgebungstechniken bei Keramiken

Römische Pigmente: Übersicht

weiß	gelb	rot	
Bleiweiß: Pb ₃ (OH) ₂ (CO ₃) ₂	Ocker: FeOOH	Hämatit: Fe ₂ O ₃	
Kreide: CaCO ₃	Jarosit: $NaFe_3(SO_4)_2(OH)_6$	Zinnober: HgS	
Gips: CaSO ₄ ⋅2 H ₂ O	Auripigment: As ₂ S ₃	Mennige: Pb ₃ O ₄	
Tone	Massicot: PbO	Realgar: As ₄ S ₄	
	gelbe Farblacke	Purpur	
		rote Farblacke	
grün	blau	schwarz	
Malachit: Cu ₂ (OH) ₂ CO ₃	Azurit: Cu ₃ (OH) ₂ (CO ₃)	Pflanzenschwarz: C	
Atacamit: Cu ₂ (OH) ₃ Cl	Ultramarin Beinschwarz		
Grünspan: Cu(Ac)₂·H₂O	Ägyptischblau: CaCu[Si ₄ O ₁₀] Magnetit: F		
	Indigo		

Keramik allgemein

- ▶ seit 5000 v.Chr.: farbige Keramiken
- ▶ 1300 v.Chr.: Erfindung der Drehscheibe (Mykene)
- ▶ 800 v.Chr.: neue Töpferöfen, z.B. für Schwarzbrand
- ▶ 500-600 v.Chr.: Höhepunkte in Kreta, Mykene, Attika
 - Verwendung von Keramikgefäßen in allen Lebensbereichen
 - Keramikgefäße als wichtige Handelgüter
- ▶ Farben allgemein
 - ► Erdfarben und Schwarz durch Wahl der Brennbedingungen
 - ► Grüne und blaue Pigmente: nach dem Brand aufgetragen
 - elementares Kupfer als Rotpigment

Anorganische Pigmente: Ein historischer Blick Griechen und Römer

Farbgebung beim Brennprozess

ightharpoonup Pigmente: Fe₂O₃ (rot) bzw. Fe-Spinelle Fe₃O₄ und MnFe₂O₄ (schwarz)

Farbgebung beim Brennprozess

- ▶ Pigmente: Fe₂O₃ (rot) bzw. Fe-Spinelle Fe₃O₄ und MnFe₂O₄ (schwarz)
- ► Rot-Schwarz-Techniken
 - 600 v.Chr.: schwarz auf rot (schwarzfiguriges Brennen)
 - Schweinderl (700 v.Chr. Korinth)
 - attische schwarzfigurige Halsamphora (ca. 300 v.Chr.)
 - 500 v.Chr.: rot in schwarz (rotfiguriges Brennen)
 - attische rotfigurige Amphora (500 v.Chr.)
 - Vase (400 v.Chr. griechisch)
 - weitere Erläuterung zu den Brennbedingungen hier und hier von der Antikensammlung Erlangen
 - Prinzipien
 - ▶ 1. Brennen in reduzierender Atmosphäre:

$$3 \text{ Fe}_2 \text{O}_3 + \text{CO} \longrightarrow 2 \text{ Fe}_3 \text{O}_4 + \text{CO}_2$$

2. Brennen in oxidierender Atmosphäre:

$$4 \text{ Fe}_3 \text{O}_4 + \text{O}_2 \longrightarrow 6 \text{ Fe}_2 \text{O}_3$$

- Trick: Oxidation nur in porösen Bereichen der Keramik, und nicht dort, wo bereits eine Schmelze vorliegt
- Steuerung der Schmelzpunkte durch K-Gehalt des Schlickers

Farbgebung beim Brennprozess

- ▶ Pigmente: Fe₂O₃ (rot) bzw. Fe-Spinelle Fe₃O₄ und MnFe₂O₄ (schwarz)
- ▶ Rot-Schwarz-Techniken
 - ▶ 600 v.Chr.: schwarz auf rot (schwarzfiguriges Brennen)
 - Schweinderl (700 v.Chr. Korinth)
 - attische schwarzfigurige Halsamphora (ca. 300 v.Chr.)
 - ► 500 v.Chr.: rot in schwarz (rotfiguriges Brennen)
 - attische rotfigurige Amphora (500 v.Chr.)
 - ► Vase (400 v.Chr. griechisch)
 - weitere Erläuterung zu den Brennbedingungen hier und hier von der Antikensammlung Erlangen
 - Prinzipien
 - ▶ 1. Brennen in reduzierender Atmosphäre:

$$3 \operatorname{Fe_2O_3} + \operatorname{CO} \longrightarrow 2 \operatorname{Fe_3O_4} + \operatorname{CO_2}$$

2. Brennen in oxidierender Atmosphäre:

$$4 \operatorname{Fe_3O_4} + \operatorname{O_2} \longrightarrow 6 \operatorname{Fe_2O_3}$$

- Trick: Oxidation nur in porösen Bereichen der Keramik, und nicht dort, wo bereits eine Schmelze vorliegt
- Steuerung der Schmelzpunkte durch K-Gehalt des Schlickers
- Schwarz-Weiß-Rot-Keramiken
 - ▶ weiße Farbe durch Talk Mg₃(OH)₂[Si₄O₁₀]
 - z.B. attisch schwarzfigurige Weinkanne (600 v. Chr.)

Anorganische Pigmente: Ein historischer Blick

Mittelalter (Malerei)

Einleitung

Die Anfänge: Höhlenmalerei

Frühe Hochkulturen

Griechen und Römer

Mittelalter (Malerei)

Pigmente als industrielle Produkte

Klassische Pigmente heute

Literatur und Links

- ▶ keine prinzipiellen Neuerungen gegenüber Römerzeit
- vor allem neue Maltechniken
- ▶ ↓ Verwendung von Bindemitteln in der Malerei

- ▶ keine prinzipiellen Neuerungen gegenüber Römerzeit
- vor allem neue Maltechniken
- ▶ ↓ Verwendung von Bindemitteln in der Malerei
- Wasserfarben
 - ► A. Dürer (1489)

- keine prinzipiellen Neuerungen gegenüber Römerzeit
- vor allem neue Maltechniken
- ▶ ↓ Verwendung von Bindemitteln in der Malerei
- Wasserfarben
 - ► A. Dürer (1489)
- Aguarellmalerei
 - ▶ ab ca. 1400 n. Chr.
 - Gummi Arabicum als Bindemittel
 - ► Beispiel: Gebrüder Limburg 'Stundenbücher' (Verwendung von Lapis-Lazuli)

- keine prinzipiellen Neuerungen gegenüber Römerzeit
- vor allem neue Maltechniken
- ▶ ↓ Verwendung von Bindemitteln in der Malerei
- Wasserfarben
 - A. Dürer (1489)
- Aquarellmalerei
 - ▶ ab ca. 1400 n. Chr.
 - Gummi Arabicum als Bindemittel
 - ► Beispiel: Gebrüder Limburg 'Stundenbücher' (Verwendung von Lapis-Lazuli)
- ▶ Fresko-Malerei
 - Putz als Binder
 - Beispiele
 - ▶ Beweinung Christi, Giotto (1306, vorwiegend Erdfarben)
 - Vertreibung aus dem Garten Eden, Michelangelo (1508-12, Sixtinische Kapelle)

Anorganische Pigmente: Ein historischer Blick

Mittelalter (Malerei)

Malerei (Techniken)

- Eitempera
 - ► Ei als Bindemittel (Eiweiss härtet an Luft aus)
 - ▶ Problem: Schrumpfung, Risse, schnelle Trocknung
 - Beispiele:
 - ► Verkündigung an Maria, Unbekannter Meister, 1490
 - ► San Marco Alta, Fra Angelico, 1400-1445

Malerei (Techniken)

- Eitempera
 - Ei als Bindemittel (Eiweiss härtet an Luft aus)
 - Problem: Schrumpfung, Risse, schnelle Trocknung
 - Beispiele:
 - ▶ Verkündigung an Maria, Unbekannter Meister, 1490
 - ► San Marco Alta, Fra Angelico, 1400-1445
- Ölmalerei
 - Leinöl oder Walnussöl als Bindemittel
 - Beispiele:
 - ► Jan van Eyck (1395-1491)
 - ► Vincent van Gogh (1853-1890)
 - Leonardo da Vinci (1474), Portrait of Ginerva de' Bencia

Malerei (Techniken)

Eitempera

- Ei als Bindemittel (Eiweiss härtet an Luft aus)
- Problem: Schrumpfung, Risse, schnelle Trocknung
- Beispiele:
 - Verkündigung an Maria, Unbekannter Meister, 1490
 - ► San Marco Alta, Fra Angelico, 1400-1445

Ölmalerei

- Leinöl oder Walnussöl als Bindemittel
- Beispiele:
 - ► Jan van Eyck (1395-1491)
 - ► Vincent van Gogh (1853-1890)
 - Leonardo da Vinci (1474), Portrait of Ginerva de' Bencia

Acrylmalerei

- im 20. Jahrhundert
- ► Acrylharze als Binder
- Vorteile:
 - beim Verarbeiten mit Wasser beliebig verdünnbar
 - beim Trocknen Bildung von klaren, wasserfesten Kunststoffen
 - brilliante Farben (Beispiel: D. Hockney)

Anorganische Pigmente: Ein historischer Blick
L Pigmente als industrielle Produkte

Einleitung

Die Anfänge: Höhlenmalere

Frühe Hochkulturen

Griechen und Römer

Mittelalter (Malerei)

Pigmente als industrielle Produkte

Klassische Pigmente heute

Literatur und Link

Pigmente als industrielle Produkte

→ gezielte Synthesen und Entwicklung von Pigmenten (1700 bis ca. 1800):

Jahr	Pigmentgruppe	Formel	
1704	Berliner Blau	$Fe[Fe_2(CN)_6]_3$	
1780	Rinmanns Grün	$Zn_{1-x}Co_xO$	
1797	Bleichromat	PbCrO ₄	
1802	Thenards-Blau	$CoAl_2O_4$	
1809	Chromgrün	Cr ₂ O ₃	

- ▶ erstes synthetisches Blaupigment: Berliner Blau (Fe[Fe₂(CN)₆]₃)
- erste synthetische, hochtemperaturstabile Mischoxide (Thenards-Blau, Rinmanns-Grün)
- ▶ Pigmente mit Cr als Farbträger

Neue Pigmente

- ▶ Berliner Blau $(Fe_4[Fe(CN)_6]_3$ genauer: $Fe^{III}[Fe^{II}Fe^{III}(CN)_6]_3 \cdot n H_2O$; n=14-16
 - ► Farbigkeit: Gemischtvalenz (M⇒M-CT)
 - ▶ Bezeichnung: Eisen-Blau, Preußisch Blau, Pariser Blau, Turnbulls Blau
 - Herstellung über Fällungsreaktionen von Fe(II) und anschließende partielle Oxidation
 - Struktur des Anions
 - ▶ bis 180°C stabil
 - Verwendung bis heute in Druckfarben für Tiefdruck, für Lacke und zur Buntpapierherstellung

Neue Pigmente

- ▶ Berliner Blau (Fe₄[Fe(CN)₆]₃ genauer: Fe^{III}[Fe^{II}Fe^{III}(CN)₆]₃ · n H₂O; n = 14-16
 - ► Farbigkeit: Gemischtvalenz (M⇒M-CT)
 - ▶ Bezeichnung: Eisen-Blau, Preußisch Blau, Pariser Blau, Turnbulls Blau
 - Herstellung über Fällungsreaktionen von Fe(II) und anschließende partielle Oxidation
 - Struktur des Anions
 - ▶ bis 180°C stabil
 - Verwendung bis heute in Druckfarben für Tiefdruck, für Lacke und zur Buntpapierherstellung
- ▶ gemischte Metalloxide: Thenards-Blau (CoAl $_2$ O $_4$) und Rinmanns-Grün (Co $_x$ Zn $_{1-x}$ O)
 - ▶ wichtige keramische Farbkörper, da sehr temperaturstabil (bis ca. 1500°C)
 - Spinell- bzw. Wurtzit-Struktur
 - ► Farbträger: Co(II) (d⁷) in tetraedrischer Koordination
 - Verwendung von Thenards-Blau heute:
 - Coelinblau der Malkästen, Banknoten

Neue Pigmente

- ▶ Berliner Blau (Fe₄[Fe(CN)₆]₃ genauer: Fe^{III}[Fe^{II}Fe^{III}(CN)₆]₃ · n H₂O; n = 14-16
 - ► Farbigkeit: Gemischtvalenz (M⇒M-CT)
 - ▶ Bezeichnung: Eisen-Blau, Preußisch Blau, Pariser Blau, Turnbulls Blau
 - Herstellung über Fällungsreaktionen von Fe(II) und anschließende partielle Oxidation
 - Struktur des Anions
 - bis 180°C stabil
 - Verwendung bis heute in Druckfarben für Tiefdruck, für Lacke und zur Buntpapierherstellung
- gemischte Metalloxide: Thenards-Blau (CoAl₂O₄) und Rinmanns-Grün (Co_xZn_{1-x}O)
 - ▶ wichtige keramische Farbkörper, da sehr temperaturstabil (bis ca. 1500°C)
 - ► Spinell- bzw. Wurtzit-Struktur
 - ► Farbträger: Co(II) (d⁷) in tetraedrischer Koordination
 - Verwendung von Thenards-Blau heute:
 - Coelinblau der Malkästen, Banknoten
- ► Chrom-Pigmente: Cr₂O₃ und PbCrO₄
 - ► Farbträger: Cr(III) bzw. Cr(VI)
 - ▶ sehr intensive Farben

1820-1920

Jahr	Pigmentgruppe	Formel, Bemerkung
1817	Cadmiumsulfid	CdS
1824	Zinkweiß	ZnO
1832	Ultramarin	je nach Farbträger
1878	α -Fe $_2$ O $_3$	erste synthetische Herstellung
1900	Manganviolett	$NH_4MnP_2O_7$
1910	Cd-Sulfide/Selenide	

► CdS und Cd-Sulfid/Selenide als kräftige gelb/rot Farben

- ► synthetische Herstellung von Ultramarin durch Leverkus, industrielle Produktion bei Bayer
- ► Zinkweiß als erstes 'echtes' Weißpigment

>1920

Jahr	Pigmentgruppe	Formel, Bemerkung	
1920	Titanweiß	TiO ₂	
1925-50	div. Fe-Oxide	neue Herstellungsverfahren	
1950	Zr-Silicatfarbkörper	ZrSiO ₄	
1968	erste Perlglanzpigmente	BiOCI	
1970	TiO ₂ -Glimmerpigmente		
1977	BiVO ₄	Ersatz von Cd-Gelb usw.	

- Optimierung von Syntheseprozessen (Fe-Pigmente)
- ▶ Rutil (TiO₂) als optimales (Brechungsindex!) Weißpigment
- ▶ Mischoxidpigmente auf Basis Spinell, Rutil usw.
- neue Hochtemperaturbeständige keramische Farbkörper auf Zirkon-(ZrSiO₄) Basis
 - Zr-Pr-Gelb: (Zr,Pr⁴⁺)[SiO₄]
 - ightharpoonup Zr-V-Blau: Zr[(Si,V^{+IV})O₄]
 - Zr-Cd-Rot: Zr[SiO₄]/CdSe (Einschluß-Pigment)
- Pigmente mit besonderen Effekten (Metall- und Perlglanz),
 Funktionspigmente

Anorganische Pigmente: Ein historischer Blick

Klassische Pigmente heute

Einleitung

Die Anfänge: Höhlenmalere

Frühe Hochkulturen

Griechen und Römer

Mittelalter (Malerei

Pigmente als industrielle Produkte

Klassische Pigmente heute

Literatur und Link

'Klassische' Pigmente heute

- klassische Buntpigmente (Ultramarin, Thenards-Blau, Ägyptisch Blau usw.)
- ▶ Massenpigmente (Rutil, Fe-Oxide, Cr-Oxide, Rutil mit Übergangsmetallen)
- ▶ neuere Entwicklungen bei HT-Pigmenten (komplette Farbpalette mit Zr-Silicat-Pigmenten; Einschluß-Pigmente)
- organische Pigmente (z.B. Phthalocyanine)
- ► Effekt- und Funktionspigmente

Phthalocyanine

- \blacktriangleright $\pi \rightarrow \pi^*$ -Übergänge im Ligand
- ▶ im Kristall bei M^{2+} neutrale Stapel \mapsto echtes Pigment

Einsatzgebiete, wirtschaftliche Bedeutung

- ► Einsatzgebiete für anorganische Pigmente
 - ► Farben, Lacke
 - Kunststoffe, Gummi
 - Firnes
 - Künstlerfarben
 - Druckfarben
 - Textilfarben
 - Lederfarben
 - ► Baustoffe (Zement ...)
 - Papier
 - Kosmetik
 - Keramik, Gläser, Email

Einsatzgebiete, wirtschaftliche Bedeutung

- ► Einsatzgebiete für anorganische Pigmente
 - Farben, Lacke
 - Kunststoffe, Gummi
 - Firnes
 - Künstlerfarben
 - Druckfarben
 - Textilfarben
 - Lederfarben
 - ▶ Baustoffe (Zement ...)
 - Papier
 - Kosmetik
 - Keramik, Gläser, Email
- wirtschaftliche Bedeutung
 - ▶ Menge: $6 \cdot 10^6$ t (6 Mill.-t; ohne C-Schwarz), davon $\frac{1}{3}$ USA, $\frac{1}{3}$ Europa
 - Wert: 10¹⁰ Dollar (2002)
 - ▶ Deutschland: 40 % der Weltproduktion, z.B. 50 % alle Fe-Oxide

Verbrauch (in 1000 t/a)

Pigment	1990 (Westeuropa)	1994 (Westeuropa)	2000 (Welt)	(Jahr, Welt)
C-Schwarz	1198.0	1301.6		
TiO ₂	859.6	961.8	3300	3900 (2006)
Fe-Oxide	340.2	383.8	800	912 (2000)
Zn-Sulfid	75.4	83.5	200	
Zn-Oxide	78.8	86.2	35	
PbCrO ₄	21.2	18.6	30	
Perlglanz-P.			20	
Al	15.2	16.5	15	
Fe-Blau	6.1	6.7	16	
Ultramarine	2.6	3.0	18	
Cd-Pigmente			1	

Deutschland: ca. 40% aller anorg. Buntpigmente

Anorganische Pigmente: Ein historischer Blick

Klassische Pigmente heute

- Verbesserung bekannter Pigmente
 - Deckvermögen
 - Transparenz
 - Brillianz
 - Beständigkeit
 - Farbstärke
 - Dispergierbarkeit

- Verbesserung bekannter Pigmente
 - Deckvermögen
 - Transparenz
 - Brillianz
 - Beständigkeit
 - Farbstärke
 - Dispergierbarkeit
- \blacktriangleright Ersatz toxikologisch bedenklicher Pigmente (PbCrO₄ \mapsto CdS \mapsto Zn_{1-x}Mn_xO)

- Verbesserung bekannter Pigmente
 - Deckvermögen
 - Transparenz
 - Brillianz
 - Beständigkeit
 - ► Farbstärke
 - Dispergierbarkeit
- \blacktriangleright Ersatz toxikologisch bedenklicher Pigmente (PbCrO₄ \mapsto CdS \mapsto Zn_{1-x}Mn_xO)
- ► Ersatz umweltschädlicher Herstellungsverfahren (z.B. TiO₂: Sulfat → Chlorid-Verfahren)

- Verbesserung bekannter Pigmente
 - Deckvermögen
 - Transparenz
 - Brillianz
 - Beständigkeit
 - ► Farbstärke
 - Dispergierbarkeit
- \blacktriangleright Ersatz toxikologisch bedenklicher Pigmente (PbCrO₄ \mapsto CdS \mapsto Zn_{1-x}Mn_xO)
- ► Ersatz umweltschädlicher Herstellungsverfahren (z.B. TiO₂: Sulfat → Chlorid-Verfahren)
- ▶ Erschließung neuer Einsatzgebiete

- Verbesserung bekannter Pigmente
 - Deckvermögen
 - Transparenz
 - Brillianz
 - Beständigkeit
 - ► Farbstärke
 - Dispergierbarkeit
- \blacktriangleright Ersatz toxikologisch bedenklicher Pigmente (PbCrO₄ \mapsto CdS \mapsto Zn_{1-x}Mn_xO)
- ► Ersatz umweltschädlicher Herstellungsverfahren (z.B. TiO₂: Sulfat → Chlorid-Verfahren)
- ▶ Erschließung neuer Einsatzgebiete
- ► Funktionspigmente (Magnetpigmente, Korrosionsschutzpigmente, Luminophore)

- Verbesserung bekannter Pigmente
 - Deckvermögen
 - Transparenz
 - Brillianz
 - BeständigkeitFarbstärke
 - Diamanaiantantanta
 - Dispergierbarkeit
- \blacktriangleright Ersatz toxikologisch bedenklicher Pigmente (PbCrO₄ \mapsto CdS \mapsto Zn_{1-x}Mn_xO)
- ► Ersatz umweltschädlicher Herstellungsverfahren (z.B. TiO₂: Sulfat → Chlorid-Verfahren)
- ▶ Erschließung neuer Einsatzgebiete
- Funktionspigmente (Magnetpigmente, Korrosionsschutzpigmente, Luminophore)
- Neue Farbpigmente mit neuen Effekten (Metallglanz, Interferenz, Perlglanz)

Anorganische Pigmente: Ein historischer Blick
Literatur und Links

Einleitung

Die Anfänge: Höhlenmalere

Frühe Hochkulturen

Griechen und Römer

Mittelalter (Malerei)

Pigmente als industrielle Produkte

Klassische Pigmente heute

Literatur und Links

Anorganische Pigmente: Ein historischer Blick
Literatur und Links

Literatur und Links

Bücher

- G. Buxbaum, G. Pfaff (ed.): Industrial Inorganic Pigments, Wiley VCH, 2008.
- ▶ H. Endriss: Aktuelle Anorganische Buntpigmente, Verlag Vincentz 1997.
- ► Technische Anorganische Chemie, VCH
- Ullmanns Encyclopedia of Industrial Chemistry
- G. Benzing et.al: Pigmente und Farbstoffe für die Lackindustrie, Expert-Verlag 1992.

Übersichtsartikel

- P. Kleinschmit: Zirkonsilicat-Farbkörper, Chemie in unserer Zeit, 6, 182 (1986).
- ▶ G. Pfaff: Perlglanzpigmente; Chemie in unserer Zeit, 31, 6-16 (1997).
- W. Noll: Thenards-Blau, Chemie in unserer Zeit, 14, 37 (1980).
- Naturwissenschaften, 69, 382 (1982).
- Praxis der Naturwissenschaften, 37, 3-10 (1988).
- C. D. Eisenbach: Farbstoffe und Pigmente, Spektrum der Wissenschaft, 10, 94-99 (1997).
- ► G. Pfaff: Perlglanzpigmente, Spektrum der Wissenschaft, 10, 99-102 (1997).

Literatur und Links (Forts.)

- Links, Grundlagen ...
 - Pigment-Lexikon (sehr schöne Seiten von Thomas Seilnacht, Tuttlingen)
 - Chemie und Kunst (sehr gut gemachte Seiten von J. Lipscher, Kantonsschule Baden)
- Links zur Malerei
 - Pigmente in der Malerei (gute Übersicht über diverse in der Malerei verwendete Pigmente)
 - ► Louvre
 - ► Linksammlung zu div. Kunst
 - ► Das alte Ägypten
- ► Keramiken und Fmail
 - ► Antikensammlung Erlangen
 - ► Glas-Museum Online
- ► Firmen-Seiten (Hersteller und Vertreiber von div. Pigmenten)
 - ► Fa. Merck
 - ► Fa. Deffner und Johann, Vertrieb u.a. von Farben und Pigmenten
 - ► Emrath: Übersicht Pigmente
 - Kremer-Pigmente sehr informative Seite, auch zu alten Pigmenten
 - Berger
- Vermischtes
 - ▶ Pigmente: Historisches, Chemisches und Bedeutung in der Kunst (in

DANKE!