4. Substitutionsmischkristalle, HUME-ROTHERY-Phasen

Vorlesung INTERMETALLISCHE PHASEN, Sommersemester 2025 Stefanie Gärtner (UR), Constantin Hoch (LMU), <u>Caroline Röhr</u> (ALU) 4. Substitutionsmischkristalle, HUME-ROTHERY-Phasen

Substitutionsmischkristalle

Einleitung

Ordnungsvarianten

Prinzip

...von b.c.c.

...dichtester Kugelpackungen

O/D-Phasenübergänge

physikalische Eigenschaften

HUME-ROTHERY-Phasen

Einleitung

Phasenfolgen

Strukturchemie

elektronische Strukturen

Eigenschaften, Verwendung

Einleitung Ordnungsvarianten

Prinzip ...von b.c.c. ...dichtester Kugelpackungen O/D-Phasenübergänge physikalische Eigenschaften

2 HUME-ROTHERY-Phasen

Einleitung Phasenfolgen Strukturchemie elektronische Strukturen

Eigenschaften, Verwendung

3 Zusammenfassung

4. Substitutionsmischkristalle, HUME-ROTHERY-Phasen

Substitutionsmischkristalle

Einleitung

Ordnungsvarianten

Prinzip

...von b.c.c.

...dichtester Kugelpackungen

O/D-Phasenübergänge

physikalische Eigenschaften

HUME-ROTHERY-Phasen

Einleitung

Phasenfolgen

Strukturchemie

elektronische Strukturen

Eigenschaften, Verwendung

Einleitung

Ordnungsvarianten Prinzip ...von b.c.c. ...dichtester Kugelpackunge O/D-Phasenübergänge

2 HUME-ROTHERY-Phasen

Einleitung

Staulturchomi

Strukturennie

elektronische Strukturen

Eigenschaften, Verwendung

3 Zusammenfassung

4. Substitutionsmischkristalle, HUME-ROTHERY-Phasen

Substitutionsmischkristalle

Einleitung

Ordnungsvarianten

Prinzip

...von b.c.c.

...dichtester Kugelpackungen

O/D-Phasenübergänge

physikalische Eigenschaften

HUME-ROTHERY-Phasen

Einleitung

Phasenfolgen

Strukturchemie

elektronische Strukturen

Eigenschaften, Verwendung

Grundlagen Substitutionsmischkristalle

- lückenloser Ersatz der beiden Atomsorten
- vollständige Löslichkeit im festen Zustand
- feste Lösungen (solid solution, ss)
- (Substitutions)-Mischkristalle
- ▶ mikroskopisch homogen \mapsto <u>eine</u> Phase
- ► $WW_{AA} \approx WW_{BB} \approx WW_{AB}^{-1}$
- Bedingungen:
 - Metalle isotyp
 - 'chemisch ähnlich'
 - EN-Differenz $\Delta \chi$ klein
 - gleiche v.e.-Zahl
 - ▶ Radiendifferenz $\Delta r < 15 \%$
- ▶ Beispiele (Metallradien und Differenz) \Rightarrow
 - Mo (140 pm) W (141 pm) ($\Delta r = 0.7 \%$)
 - K (238 pm) Cs (273 pm) ($\Delta r = 12.8 \%$)
- Strukturen:
 - isotyp zu beiden Randphasen
 - statistische Verteilung der Atomsorten

¹: VL FK-Chemie, Kap. 2.2., mit Tonspur

4. Substitutionsmischkristalle, HUME-ROTHERY-Phasen

Substitutionsmischkristalle

Einleitung Ordnungsvarianten Prinzip ...von b.c.c. ...dichtester

Kugelpackungen

O/D-Phasenübergänge

physikalische Eigenschaften

HUME-ROTHERY-Phasen

Einleitung

Phasenfolgen

Strukturchemie

elektronische Strukturen

Eigenschaften, Verwendung

Grenzen des lückenlosen Element-Ersatzes

- leichte Abweichungen von Radien-Kriterien (bzw. EN)
- ightarrow ightarrow vollständige Löslichkeit nur bei hohen Temperaturen
- ▶ Beispiele (Metallradien und Differenz) \Rightarrow
 - Cu (128 pm) Au (144 pm) (Δr=11.1%)
 - ▶ bei niedrigeren $T \mapsto$ Bildung von Überstrukturen = Ordnungsvarianten (\Downarrow)
- etwas stärkere Abweichungen, vor allem der v.e.-Zahl
- $\blacktriangleright \mapsto$ terminale Phasen nicht isotyp
- ▶ Löslichkeit nur im (kleineren) Randbereich → Randlöslichkeit (Phasenbreiten der terminalen Phasen)
- Beispiele: (s.a. Bronze letzte Stunde)

 α: Cu + Zn: bis 38.4 % Zn
 [']η': Zn + Cu: bis 2.3 % Cu

Phasendiagramm Cu–Zn (Messing)

4. Substitutionsmischkristalle, HUME-ROTHERY-Phasen

Substitutionsmischkristalle

Einleitung

Ordnungsvarianten

Prinzip

...von b.c.c.

...dichtester Kugelpackungen

O/D-Phasenübergänge

physikalische Eigenschaften

HUME-ROTHERY-Phasen

Einleitung

Phasenfolgen

Strukturchemie

elektronische Strukturen

Eigenschaften, Verwendung

Einleitung

Ordnungsvarianten

Prinzip ...von b.c.c. ...dichtester Kugelpackungen O/D-Phasenübergänge physikalische Eigenschaften

2 HUME-ROTHERY-Phasen

Einleitung

Ct....l.t.....l.

Strukturchemie

elektronische Strukturen

Eigenschaften, Verwendung

3 Zusammenfassung

4. Substitutionsmischkristalle, HUME-ROTHERY-Phasen

Substitutionsmischkristalle

Einleitung

Ordnungsvarianten

Prinzip

...von b.c.c.

...dichtester Kugelpackungen

O/D-Phasenübergänge

physikalische Eigenschaften

HUME-ROTHERY-Phasen

Einleitung

Phasenfolgen

Strukturchemie

elektronische Strukturen

Eigenschaften, Verwendung

Überstrukturen, Ordnungsvarianten

- Bedingungen f
 ür Bildung fester Lösung nur wenig verletzt, meist Δr = 15-20 %
- ▶ \mapsto bei niedrigerer $T \mapsto Ü$ berstrukturen, Ordnungsvarianten
- ▶ Beispiel: Cu–Au (beide f.c.c.) \mapsto Überstrukturen bei CuAu und Cu₃Au
- Strukturchemie:
- einfache Metallpackungen mit geordneter Atomverteilung
- Minimalkomponente möglichst nur von Maximalkomponente koordiniert
- ▶ Symmetrieerniedrigung; Ausbildung kristallographischer Untergruppen¹
 - t 'translationengleich': die primitive (!) EZ bleibt gleich gross, die Symmetrie darin ist ausgedünnt (Zwillings-Domänen)
 - k 'klassengleich': die Kristallklasse bleibt erhalten, die primitive (!) EZ ist vergrößert (um 'Index' des Symmetrieabstiegs)² (Antiphasen-D.)
 - i 'isomorph': wie k, aber auch die Raumgruppe bleibt gleich
 - 'Index' des Symmetrieabstiegs: Verhältnis der Ordnungen von Gruppe:Untergruppe²

 \blacktriangleright Strukturen jeweils basierend auf einer der Basis-Metallstrukturen \Downarrow

4. Substitutionsmischkristalle, HUME-ROTHERY-Phasen

Substitutionsmischkristalle

Einleitung

Ordnungsvarianten

Prinzip

...von b.c.c.

...dichtester Kugelpackungen

O/D-Phasenübergänge

physikalische Eigenschaften

HUME-ROTHERY-Phasen

Einleitung

Phasenfolgen

Strukturchemie

elektronische Strukturen

Eigenschaften, Verwendung

¹: PDF Gruppe–Untergruppe-Seminar DD 2022

²: z.B. Ordnung 2 für k2/i2: Verdopplung des Volumens der EZ

Ordnungsvarianten von b.c.c. $(cI2, Im\bar{3}m)$

Symmetrie-Stammbaum dazu

4. Substitutionsmischkristalle, HUME-ROTHERY-Phasen

Substitutionsmischkristalle

Einleitung

Ordnungsvarianten

Prinzip

...von b.c.c.

...dichtester Kugelpackungen

O/D-Phasenübergänge

physikalische Eigenschaften

HUME-ROTHERY-Phasen

Einleitung

Phasenfolgen

Strukturchemie

elektronische Strukturen

Eigenschaften, Verwendung

Ordnungsvarianten von b.c.c. $(cI2, Im\bar{3}m)$ (Forts.)

X_2YZ HEUSLER-Verbindungen¹

- ▶ cF16, $Fm\bar{3}m$ (geordnetes Fe₃Al, s.o.)
- Z: p-Block-Element: Al, Ga, Si, Ge, Sn (f.c.c.)
- $Y{:}\ {\rm Mn}\ ({\rm V},\,{\rm Cr},\,{\rm Fe})\ ({\rm in}\ {\rm OL})$
- X: d-Block-Elemente, z.B. Cu, Co, Ni, Fe, Pt (in TL)

XYZ Halb-HEUSLER-Verbindungen (t2-Untergruppe!)

- ▶ cF12, $F\bar{4}3m$, LiAlSi-Typ (ZINTL!)
- Z: p-Block-Element (f.c.c.)
- Y: Ln, Sc, Y, Li, Mg (in OL)
- X: Al, Ag, d-Block-Elemente (in 1/2 der TL)
- Eigenschaften einstellbar durch breite Substitutionsmöglichkeiten
- interessante physikalische Eigenschaften
 - Magnetische Eigenschaften
 - Bandlücken bzw. Metall–Halbleiter-Übergänge
 - Thermoelektrika
 - Supraleiter
- z.B. Cu₂MnAl: ferromagnetisch, obwohl keines der beteiligten Elemente selber FM ist

¹ CARL LUDWIG DAVID FRIEDRICH HEUSLER (1.2.1866-25.10.1947)

4. Substitutionsmischkristalle, HUME-ROTHERY-Phasen

Substitutionsmischkristalle

Einleitung

Ordnungsvarianten

Prinzip

...von b.c.c.

...dichtester Kugelpackungen

O/D-Phasenübergänge

physikalische Eigenschaften

HUME-ROTHERY-Phasen

Einleitung

Phasenfolgen

Strukturchemie

elektronische Strukturen

Eigenschaften, Verwendung

Ordnungsvarianten dichtester Kugelpackungen: AB_3

 ${\rm AB}_3\,$ besonders günstig, da A
 nur von B koordiniert

 dreieckige (3⁶ von A) 1:3-Ordnung in den Schichten (B bilden 3.6.3.6./ Kagomé-Netze)

AB_3	f.c.c.	h.c.p.	d.h.c.p.]	mischkristall
Stapelfolge	:ABC: (c)	:AB: (h)	:ABAC: (hc)	1	Einleitung
Raumgruppe	$Fm\bar{3}m, cF4$	$P6_3/mmc, hP2$	$P6_3/mmc, hP4$		Ordnungs- varianten
				1	Prinzip
	č				von b.c.c.
	Ż				dichtester Kugelpackung
Schicht-Ord.	Ċ				O/D-Phasen-
Strukturtyp	Cu ₃ Au	$\rm Ni_3Sn/Mg_3Cd$	TiNi ₃		physikalische
Raumgruppe	$Pm\bar{3}m, cP4$	$P6_3/mmc, hP8$	$P6_3/mmc, hP16$		Eigenschaften
${\cal N}$ binäre S.	75	15	7	1	HUME-ROTHERY-
EZ					Phasen Einleitung Phasenfolgen Strukturchemie elektronische Strukturon
Polyeder	Kubokta eder $[{\rm AB}_{12}]$	Antikubokta eder $[{\rm AB}_{12}]$			Eigenschaften.
	Oktaeder $[{\rm B}_6]$ (eckverkn.)	Okt. $[{\rm B}_6]$ (flächenverkn.)			Verwendung
	vgl. kubischer Perowskit	vgl. hex. Perowskit			Zusammen-

4. Substitutionsmischkristalle, HUME-ROTHERY-Phasen

Substitutions-

Ordnungsvarianten dichtester Kugelpackungen: AB_3

 quadratische (4⁴) Ordnung von A innerhalb der Schichten

AB_3	f.c.c.	h.c.p.
Stapelfolge	:ABC: (c)	:AB: (h)
Schicht-Ord.		
Strukturtyp	$TiAl_3$	Cu_3Ti
${\cal N}$ binäre S.	7	15
EZ		

▶ 3³ · 4² (gemischte 3⁶ und 4⁴) Ordnung von A innerhalb der Schichten

AB_3	f.c.c.
Stapelfolge	:ABC: (c)
Schicht-Ord.	
Strukturtyp	$ZrAl_3$
EZ	

4. Substitutionsmischkristalle, HUME-ROTHERY-Phasen

Substitutionsmischkristalle

Einleitung

Ordnungsvarianten

Prinzip

...von b.c.c.

...dichtester Kugelpackungen

O/D-Phasenübergänge

physikalische Eigenschaften

HUME-ROTHERY-Phasen

Einleitung

Phasenfolgen

Strukturchemie

elektronische Strukturen

Eigenschaften, Verwendung

Ordnungsvarianten dichtester Kugelpackungen: AB_4

 AB_4

 ebenfalls noch häufig (A nur von B koordiniert)
 ! zwei unterschiedliche, an Stapelfolge angepasste Varianten der Ebenenordnung

AB_4	f.c.c.	h.c.p.
Stapelfolge	:ABC: (c)	:AB: (h)
Raumgruppe	$Fm\bar{3}m, cF4$	$P6_3/mmc, hP2$
Schicht-Ord.		
Strukturtyp	$MoNi_4$ (I4/m)	$ m ZrAu_4$

4. Substitutionsmischkristalle, HUME-ROTHERY-Phasen

Substitutionsmischkristalle

Einleitung

Ordnungsvarianten

Prinzip

...von b.c.c.

...dichtester Kugelpackungen

O/D-Phasenübergänge

physikalische Eigenschaften

HUME-ROTHERY-Phasen

Einleitung

Phasenfolgen

Strukturchemie

elektronische Strukturen

Eigenschaften, Verwendung

Ordnungsvarianten dichtester Kugelpackungen: AB

no. 225 4aAB Verteilung von A und B in einfachen $F \frac{4}{m} \overline{3} \frac{2}{m}$ $m\bar{3}m$ Reihen f.c.c. Substitutions-0 AB f.c.c. h.c.p. mischkristalle 0 Stapelfolge ||:ABC:|| (c) ||:AB:||(h)0 Einleitung $Fm\bar{3}m, cF4$ Raumgruppe $P6_3/mmc, hP2$ Ordnungs- $\frac{1}{2}\mathbf{a} + \frac{1}{2}\mathbf{b}, \frac{1}{2}\mathbf{a} - \frac{1}{2}\mathbf{b}, \mathbf{c}$ varianten Prinzip ...von b.c.c. ...dichtester Kugelpackungen no. 139 In 2aSchicht-Ord $I \frac{4}{m} \frac{2}{m} \frac{2}{m}$ O/D-Phasen-4/mmmübergänge Strukturtyp CuAu-I CuCd 0 physikalische Raumgruppe P4/mm, tP2Eigenschaften 0 N binäre S. 19 3 0 HUME-BOTHERYk2 Phasen Einleitung Cu 1aAu no. 225 1dPhasenfolgen \mathbf{EZ} $P \frac{4}{m} \frac{2}{m} \frac{2}{m} \frac{2}{m}$ 4/mmm4/mmmStrukturchemie CuAu - I0 elektronische Strukturen $\frac{1}{2}$ 0 Eigenschaften. 0 5 Verwendung Zusammen-

 1 Details im Video und Link zur VRML-2-Datei und Link zur x3d-Seite

4. Substitutionsmischkristalle.

HUME-ROTHERY-Phasen

fassung

Ordnungsvarianten dichtester Kugelpackungen: AB_2 ?

1:2-Ordnung innerhalb einer Schicht
 A: 3⁶-Netze; B: 6³-Netze

- beobachtet nur im Wechsel mit reiner B₃-Schicht und bei h.c.p. Basis-Struktur
- $\blacktriangleright \mapsto \mathrm{WAl}_5 = \mathrm{WAl}_2\text{-} + \mathrm{Al}_3\text{-}\mathrm{Schicht}$

4. Substitutionsmischkristalle, HUME-ROTHERY-Phasen

Substitutionsmischkristalle

Einleitung

Ordnungsvarianten

Prinzip

...von b.c.c.

...dichtester Kugelpackungen

O/D-Phasenübergänge

physikalische Eigenschaften

HUME-ROTHERY-Phasen

Einleitung

Phasenfolgen

Strukturchemie

elektronische Strukturen

Eigenschaften, Verwendung

Was steckt hinter CuAu-II ??

- stabil im sehr engen T-Bereich (385-410 °C zwischen Cu/Au-Mischkristall und CuAu-I)
- Struktur: f.c.c.-Überstruktur mit sehr großer c-Achse
 - ▶ oI80, Imma
 - ▶ $a \approx b = 370 \text{ pm}, c = 3972 \text{ pm}$
- regelmässig auftretende Antiphasendomänen
- Hinweis auf Mechanismen von D→O-Phasenumwandlungen
- ? Quantifizierung von 'Ordnung'

Gew.-% Cu 084 9 °C 1064.4 °C 1000 1000 910 °C 800 800 Au-Cu 600 600 [] Cu₃Au-II 385 °C 400 400 CuAu-200 200 'n 10 20 50 60 70 80 90 100 30 Au Cu Atom-% Cu Phasendiagramm Cu-Au

4. Substitutionsmischkristalle, HUME-ROTHERY-Phasen

Substitutionsmischkristalle

Einleitung

Ordnungsvarianten

Prinzip

...von b.c.c.

...dichtester Kugelpackungen

O/D-Phasenübergänge

physikalische Eigenschaften

HUME-ROTHERY-Phasen

Einleitung

Phasenfolgen

Strukturchemie

elektronische Strukturen

Eigenschaften, Verwendung

Ordnungsvarianten Prinzip ...von b.c.c. ...dichtester Kugelpackungen O/D-Phasenübergänge

physikalische Eigenschafter

2 Hume-Rothery-Phasen

Einleitung Phasenfolgen

Strukturchemie

elektronische Strukturen

Eigenschaften, Verwendung

3 Zusammenfassung

4. Substitutionsmischkristalle, HUME-ROTHERY-Phasen

Substitutionsmischkristalle

Einleitung

Ordnungsvarianten

Prinzip

...von b.c.c.

...dichtester Kugelpackungen

O/D-Phasenübergänge

physikalische Eigenschaften

HUME-ROTHERY-Phasen

Einleitung

Phasenfolgen

Strukturchemie

elektronische Strukturen

Eigenschaften, Verwendung

Ordnungs-Unordnungs-Phasenübergänge

\blacktriangleright Ordnungsgrad s

- $\blacktriangleright \ s = 2p 1$
- pWahrscheinlichkeit, dass A (und B) auf richtigen Plätzen
- $p{=}1\,$ vollständig geordnet, alle A (und B) auf ihren korrekten Plätzen $\mapsto s=1$
- $p{=}\frac{1}{2}\,$ vollständig ungeordnet, A ist mit 50 % Wahrscheinlichkeit auf A-Platz $\mapsto s=0$
- Nahordnung, trotz fehlender Fernordnung
 - !! durch Antiphasen- bzw. Zwillingsdomänen
 - \blacktriangleright !! z.B. bei CuAu-II oben, $s=0,\,\sigma$ nahe 1

▶ Nahordnungsgrad σ

 \blacktriangleright Betrachtung der lokalen Umgebung/Verhältnis der Zahl der Kontakteq

$$\bullet \ \sigma = \frac{q - q_d}{q_o - q_d}$$

- $\sigma=1$ für $q=q_o$
- $\sigma = 0$ für $q = q_d$
- Phasenübergang (Thermodynamik)
 - Energie der Umordnung (Platztausch) immer geringer, je weiter die Ordnung fortgeschritten ist
 - ▶ S ändert sich nicht sprunghaft, PU 2. Ordnung
 - ► \mapsto Verlauf von c_p gegen T (λ -Umwandlung)

4.

Ordnungsvarianten Prinzip ...von b.c.c. ...dichtester Kugelpackungen O/D-Phasenübergänge physikalische Eigenschaften

2 HUME-ROTHERY-Phasen

Einleitung Phasenfolgen Strukturchemie

elektronische Strukturen

Eigenschaften, Verwendung

3 Zusammenfassung

4. Substitutionsmischkristalle, HUME-ROTHERY-Phasen

Substitutionsmischkristalle

Einleitung

Ordnungsvarianten

Prinzip

...von b.c.c.

...dichtester Kugelpackungen

O/D-Phasenübergänge

physikalische Eigenschaften

HUME-ROTHERY-Phasen

Einleitung

Phasenfolgen

Strukturchemie

elektronische Strukturen

Eigenschaften, Verwendung

I. Elektrische Eigenschaften

- elektronische Transporteigenschaft¹
- Ohm'sches Gesetz:

$$\mathbf{j}_q = -\sigma \mathbf{grad}U$$
 bzw. $\frac{\mathrm{d}q}{\mathrm{d}t} = -\sigma A \frac{\mathrm{d}U}{\mathrm{d}x}$

▶ mit der spezifischen elektr. Leitfähigkeit $\sigma[=\frac{1}{\rho}]$

 $\sigma = Ne\mu$

 \blacktriangleright und der Beweglichkeit $\mu = \frac{e\tau}{m_e}$ folgt

$$\sigma = \frac{Ne^2\tau}{m_e}$$

! alle Valenzelektronen N tragen zur Leitf. bei

! T-Abhängigkeit durch $\tau(T)$ (Stosszeit) bestimmt

 \blacktriangleright typische Werte für τ (hochreine Cu-Einkristalle)

300 K: 10^{-15} s (Stöße der e^- mit Phononen)

4 K: 10⁻⁹ s (Stöße mit Fremdatomen und Gitterfehlern)

4. Substitutionsmischkristalle, HUME-ROTHERY-Phasen

Substitutionsmischkristalle

Einleitung

Ordnungsvarianten

Prinzip

...von b.c.c.

...dichtester Kugelpackungen

O/D-Phasenübergänge

physikalische Eigenschaften

HUME-ROTHERY-Phasen

Einleitung

 ${\it Phasen folgen}$

Strukturchemie

elektronische Strukturen

Eigenschaften, Verwendung

¹ Details s. Reine Metalle II/2.+11. Stunde

Elektrische Leitfähigkeiten: einige Werte

	Band-	Ladungsträger-	e^- -Beweg-	spezifische	T_c	κ
	lücke	konzentration	lichkeit μ	Leitfähigkeit	[K]	[W/mK]
	E_g	$[e^-/cm^3]$	$[\mathrm{cm}^2/\mathrm{Vs}]$	$\sigma~[\Omega^{-1} \mathrm{m}^{-1}]$	(SL)	
Κ	0	$1.4 \cdot 10^{22}$		$15.9 \cdot 10^{6}$		
Na	0	$2.65 \cdot 10^{22}$		$23 \cdot 10^6$		
Cu	0	$9.3 \cdot 10^{22}$		$65 \cdot 10^6$		398
Al	0			$38 \cdot 10^6$		247
Hg	0			$4.4 \cdot 10^{6}$	4.2	
As	0	$2 \cdot 10^{20}$				
\mathbf{Sb}	0	$5.5 \cdot 10^{19}$		2.8		
Bi	0	$2.88 \cdot 10^{17}$		1		
Si	1.17 (i)		1350	$4 \cdot 10^{-4}$		
Ge	0.744 (i)		3600	$2.2 \cdot 10^{-4}$		
Те	0.33 (d)					

4. Substitutionsmischkristalle, HUME-ROTHERY-Phasen

Substitutionsmischkristalle

Einleitung

Ordnungsvarianten

Prinzip

...von b.c.c.

...dichtester Kugelpackungen

O/D-Phasenübergänge

physikalische Eigenschaften

HUME-ROTHERY-Phasen

Einleitung

Phasenfolgen

Strukturchemie

elektronische Strukturen

Eigenschaften, Verwendung

II. Mechanische Eigenschaften

- mechanische Polarisationseigenschaft¹
- \blacktriangleright Spannungs-Dehnungsdiagramme \Downarrow
- praktische Bulk-Eigenschaften stark von Probenvorbehandlung etc. abhängig
- kritische Scher-Spannungen in geordneten Legierungen i.A. geringer
- häufig verringerte Duktilität
- aber auch abhängig von der Art der Ausordnung
- ▶ z.B. $Cu_3Au \Rightarrow$
 - D: geringere Steigung (dehnbarer, duktiler)
 - O: bei mittleren Spannungen hohe Steigung, weniger dehnbar ausgeprägtere Dehnungshärtung
- ▶ z.B. CuAu:
 - D: hart und spröde
 - O: weich wie reines Cu

¹: Details s. Reine Metalle II/2.+11. Stunde

²: N. S. Stoloff, R. G. Davies: The mechanical properties of ordered alloys, *Progress in Materials Science* 13, 1-84 (1968).

nur schematisch!

4. Substitutionsmischkristalle, HUME-ROTHERY-Phasen

Substitutionsmischkristalle

Einleitung

Ordnungsvarianten

Prinzip

...von b.c.c.

...dichtester Kugelpackungen

O/D-Phasenübergänge

physikalische Eigenschaften

HUME-ROTHERY-Phasen

Einleitung

Phasenfolgen

Strukturchemie

elektronische Strukturen

Eigenschaften, Verwendung

vgl. 2.+11. Stunde: Mechanische Eigenschaften (vereinfacht)

- \triangleright σ (Ursache, Spannung) und ϵ (Wirkung, Dehnung): Tensoren 2. Stufe (σ : Streck- und Scher-Komponenten) \Rightarrow
- Vereinfachung: 1D-Fall, 'Normalspannung', reine Dehnung, ein (1) σ_{ii} $\sigma = \frac{F}{4}$
- Spannungs-Dehnungs-Diagramm \Rightarrow
- 'elastisches' Verhalten (HOOK'sches G.)
 - Spannungs(σ)-Dehnungs(ϵ)-Kurve mit konstanter Steigung = E-Modul: $\Delta \sigma = E \Delta \epsilon$

• Al (f.c.c.): 69 GPa

- Cu (f.c.c.): 130 GPa
- Fe (b.c.c.): 207 GPa
- Al₂O₃: 380 GPa

▶ 'plastisches' Verhalten:

- bei höheren Spannungen Abweichungen von Linearität
- Dehnungshärtung, Einschnürung ('Necking'), Bruch

 $\sigma_{i,i}$: 9 Komponenten $\sigma_{i,i}$ (i = j): Normal/Schub-K. $\sigma_{i,j}$ $(i \neq j)$: Scher-Kompon.

Spannungs-Dehnungs-Diagramm

4 mischkristalle. HUME-BOTHERY-Phasen

Substitutionsmischkristalle

Einleitung

Ordnungsvarianten

Prinzip

...von b.c.c.

...dichtester Kugelpackungen

O/D-Phasenübergänge

physikalische Eigenschaften

HUME-BOTHERY-Phasen

Einleitung

Phasenfolgen

Strukturchemie

elektronische Strukturen

Eigenschaften. Verwendung

Substitutionsmischkristalle Einleitung

Ordnungsvarianten Prinzip ...von b.c.c. ...dichtester Kugelpackunger O/D-Phasenübergänge physikalische Eigenschafter

2 HUME-ROTHERY-Phasen Einleitung

Phasenfolgen Strukturchemie elektronische Strukturen Eigenschaften, Verwendung

3 Zusammenfassung

4. Substitutionsmischkristalle, HUME-ROTHERY-Phasen

Substitutionsmischkristalle

Einleitung

Ordnungsvarianten

Prinzip

...von b.c.c.

...dichtester Kugelpackungen

O/D-Phasenübergänge

physikalische Eigenschaften

HUME-ROTHERY-Phasen

Einleitung

Phasenfolgen

Strukturchemie

elektronische Strukturen

Eigenschaften, Verwendung

HUME-ROTHERY-Phasen: Allgemeines

WILLIAM HUME-ROTHERY² (1899-1968) (University of Oxford)

- Voraussetzungen: ähnlich Substitutionsmischkristalle (Δr < 15 %)
- aber: Komponenten unterschiedlicher Valenz (v.e.-Zahl)

1926 Beobachtung von WILLIAM HUME-ROTHERY¹

- Phasenfolge abhängig von der Valenzelektronenkonzentration (v.e.c.) → 'HUME-ROTHERY-Regeln'
- 1936 durch N. F. MOTT und H. JONES mittels NFE-Ansatz erklärt (s.u.)
 - ▶ Elemente: späte A2- + B1-Elemente
 - ► Name:
 - 1 HUME-ROTHERY-Phasen
 - 2 Messing-artige Phasen
 - 8 Elektronenverbindungen
 - Beispiel-Systeme
 - Cu Zn (Messing); Cu Sn (Bronze)
 - Cu Cd, Ag–Cd, Rh Zn, usw.

W. Hume-Rothery, J. Inst. Met., 35, 295 (1926); W. Hume-Rothery, G. W.
 Mabbott, K. M. Channel-Evans, Phil. Trans. Roy. Soc. A 233, 1 (1934).
 ² G. Raynor,
 Biographical Memoirs of Fellows of the Royal Society, 15, 109-139 (1997).

4. Substitutionsmischkristalle, HUME-ROTHERY-Phasen

Substitutionsmischkristalle

Einleitung

Ordnungsvarianten

Prinzip

...von b.c.c.

...dichtester Kugelpackungen

O/D-Phasenübergänge

physikalische Eigenschaften

HUME-ROTHERY-Phasen

Einleitung

Phasenfolgen

Strukturchemie

elektronische Strukturen

Eigenschaften, Verwendung

Ordnungsvarianten Prinzip

...dichtester Kugelpackungen

O/D-Phasenübergänge physikalische Eigenschaft

2 HUME-ROTHERY-Phasen

Einleitung

Phasenfolgen

Strukturchemie elektronische Strukturen Eigenschaften, Verwendung

3 Zusammenfassung

4. Substitutionsmischkristalle, HUME-ROTHERY-Phasen

Substitutionsmischkristalle

Einleitung

Ordnungsvarianten

Prinzip

...von b.c.c.

...dichtester Kugelpackungen

O/D-Phasenübergänge

physikalische Eigenschaften

HUME-ROTHERY-Phasen

Einleitung

Phasenfolgen

Strukturchemie

elektronische Strukturen

Eigenschaften, Verwendung

typische Phasendiagramme

100 0 20 40 60 80 1038 1200 083 1000 1000 1000 900 900 Temperatur [°C] 900 Temperatur [°C] 800 800 700 700 α 600 600 500 415° 500 500 400 419 470 424° ----300 2320 400 400 227° 200 189 **3**300 100 **.** n 300 100 20 40 60 80 100 Atom.-% Zn Cu Zn Cu Atom.-% Sn Sn Cu–Sn: Bronze¹ Cu–Zn: Messing

¹Details s. Review: A. Leineweber, J. Phase Equilib. Diffus. 44, 343-393 (2023).

4. Substitutionsmischkristalle, HUME-ROTHERY-Phasen

Substitutionsmischkristalle

Einleitung

Ordnungsvarianten

Prinzip

...von b.c.c.

...dichtester Kugelpackungen

O/D-Phasenübergänge

physikalische Eigenschaften

HUME-ROTHERY-Phasen

Einleitung

Phasenfolgen

Strukturchemie

elektronische Strukturen

Eigenschaften, Verwendung

Beispiele, tabellarisch

Phase	α	β	γ	ϵ
Struktur	f.c.c.	b.c.c.	b.c.cÜberstruktur	h.c.p.
v.e.c. (nach HUME-ROTHERY)	1	$\frac{3}{2} = \frac{21}{14} = 1.5$	$\frac{21}{13} = 1.615$	$\frac{21}{12} = 1.75$
maximale Löslichkeit	1.362	1.48	1.538	
(nach MOTT/JONES)				
beobachtet (alle Systeme)		1.36 - 1.59	1.54 - 1.70	1.65 - 1.89
experimentelle Werte				
Cu–Zn	1.284	CuZn (1.48)	Cu_5Zn_8 (1.58-1.66)	$CuZn_3$
Cu–Sn	1.270	$\mathrm{Cu}_{5}\mathrm{Sn}~(1.49)$	$Cu_{31}Sn_8$ (1.67)	$\rm Cu_3Sn$
Cu–Al	1.408	Cu_3Al (1.48)	Cu_9Al_4 (1.62-1.77)	-
Cu–In		Cu_3In	$\mathrm{Cu}_{9}\mathrm{In}_{4}$	-
Fe–Al		FeAl $(1.5)^1$		
Co–Zn		$CoZn_3$ (1.5)	$Co_5 Zn_{21}$ (1.62)	-
Rh–Zn		-	$\rm Rh_5Zn_{21}$	-

¹: s.o. bei b.c.c.-Ordnungsvarianten; v.e.(Fe-Gruppe) = 0

4. Substitutionsmischkristalle, HUME-ROTHERY-Phasen

Substitutionsmischkristalle

Einleitung

Ordnungsvarianten

Prinzip

...von b.c.c.

...dichtester Kugelpackungen

O/D-Phasenübergänge

physikalische Eigenschaften

HUME-ROTHERY-Phasen

Einleitung

Phasenfolgen

Strukturchemie

elektronische Strukturen

Eigenschaften, Verwendung

Phasenfolgen, nach steigender v.e.c.

- α : f.c.c., Cu-Typ, wie A2-Element selber
 - bei niedriger v.e.c. (1 bis ca. 1.4)
 - Randlöslichkeit von B1 in A2 (Cu, Ag, Au etc.)
 - unterschiedlich breite Einphasengebiete, keine Überstrukturen
- $\mu:\ \beta\text{-Mn-Typ},\ cP20$
 - nur in wenigen Systemen (Cu–Si, Ag–Al, Au–Al, Co–Zn)
 - v.e.c. 1.40 bis 1.54
- β : b.c.c., W-Typ, bei hohen T statistisch
 - ▶ beim Abkühlen \mapsto geordnete β '-Phase (CsCl-Typ, s.o.)
 - unterschiedlich große Phasenbreiten

• v.e.c. im Bereich um $\frac{3}{2} = 1.5 = \frac{21}{14}$ (1.36 - 1.59)

• CuZn: $\frac{1+2}{2} = \frac{3}{2} = 1.5$

•
$$Cu_5Sn: \frac{3\times 1+1\times 4}{3\times 1+1\times 3} = \frac{9}{6} = 1.5$$

• Cu₃In:
$$\frac{3 \times 1 + 1 \times 3}{4} = \frac{6}{4} = 1.5$$

 $\gamma: 3 \times 3 \times 3$ b.c.c.-Überstruktur, cI52 Struktur

• v.e.c. im Bereich um $\frac{21}{13} = 1.615$ (1.54-1.70)

•
$$\operatorname{Cu}_5 \operatorname{Zn}_8$$
: $\frac{5 \times 1 + 8 \times 2}{13} = \frac{21}{13}$
• $\operatorname{Cu}_{31} \operatorname{Sn}_8$: $\frac{31 \times 1 + 8 \times 4}{39} = \frac{63}{39} = \frac{21}{13}$
• $\operatorname{Cu}_9 \operatorname{Al}_4$: $\frac{9 \times 1 + 4 \times 3}{13} = \frac{21}{13}$

 $\delta:~6{\times}6{\times}6$ b.c.c.-Überstruktur, cF416

meist nur bei hoher Temperatur

4.

Substitutionsmischkristalle, HUME-ROTHERY-Phasen

Substitutionsmischkristalle

Einleitung

Ordnungsvarianten

Prinzip

...von b.c.c.

...dichtester Kugelpackungen

O/D-Phasenübergänge

physikalische Eigenschaften

HUME-ROTHERY-Phasen

Einleitung

Phasenfolgen

Strukturchemie

elektronische Strukturen

Eigenschaften, Verwendung

Phasenfolgen, nach steigender v.e.c. (Forts.)

 α : f.c.c., Cu-Typ, wie A2-Element selber μ : β -Mn-Typ, cP20 β : b.c.c., W-Typ, bei hohen T statistisch, beim Abkühlen β' (CsCl-Typ) • bei v.e.c. um $\frac{3}{2} = 1.5 = \frac{21}{14}$ γ : 3×3×3 b.c.c.-Überstruktur, cI52• bei v.e.c. um $\frac{21}{13} = 1.615$ δ : 6×6×6 b.c.c.-Überstruktur, cF416 (nur bei hohen T) C: meist nur bei hoher Temperatur $hP26 (P6_3/m)$ \blacktriangleright z.B. Cu₁₀Sn₂ (v.e.c.=1.692) Struktur ϵ : h.c.p., Mg-Typ, mit $\frac{c}{a} < 1.633$ (Cu₃Sn: 1.568) in allen Systemen ▶ statistisch, z.T. mit Überstruktur (z.B. Ni₃Sn-Typ, s.o., RG Pmmn) • bei v.e.c. um $\frac{21}{12} = 1.75$ (1.65-1.89) • CuZn₂: $\frac{1 \times 1 + 3 \times 2}{4} = \frac{21}{12}$ • Cu₃Sn: $\frac{3 \times 1 + 1 \times 4}{4} = \frac{7}{4} = \frac{21}{12}$ h.c.p. Mg-Typ, mit $\frac{c}{a} > 1.633$ (Zn: 1.856) ▶ v.e.c. ≈ 2 n': NiAs-Tvp, aufgefüllt \blacktriangleright z.B. Cu₆Sn₅ (v.e.c. = 2.36) Struktur

4. Substitutionsmischkristalle, HUME-ROTHERY-Phasen

Substitutionsmischkristalle

Einleitung

Ordnungsvarianten

Prinzip

...von b.c.c.

...dichtester Kugelpackungen

O/D-Phasenübergänge

physikalische Eigenschaften

HUME-ROTHERY-Phasen

Einleitung

Phasenfolgen

Strukturchemie

elektronische Strukturen

Eigenschaften, Verwendung

Einleitung

Ordnungsvarianten

Prinzip ...von b.c.c. ...dichtester Kugelpackunger D/D-Phasenübergänge

physikalische Eigenschaften

2 HUME-ROTHERY-Phasen

Einleitung Phasenfolgen Strukturchemie elektronische Strukturen Figurecheften Verwonde

3 Zusammenfassung

4. Substitutionsmischkristalle, HUME-ROTHERY-Phasen

Substitutionsmischkristalle

Einleitung

Ordnungsvarianten

Prinzip

...von b.c.c.

...dichtester Kugelpackungen

O/D-Phasenübergänge

physikalische Eigenschaften

HUME-ROTHERY-Phasen

Einleitung

Phasenfolgen

Strukturchemie

elektronische Strukturen

Eigenschaften, Verwendung

 \blacktriangleright durch Symmetrieerniedrigung \mapsto 4 verschiedene Atomsorten

- Würfel um Loch, bestehend aus zwei Tetraedern: Cu(1) (gold) und Zn(1) (blau), beide 8c
- Oktaeder um Loch (schwarz): Cu(2) auf 12e
- Kuboktaeder um Loch (rot): Zn(2) auf 24g
- ▶ Cu₅Zn₈ damit voll geordnet, 'Kolorierung' nach CN:
 - ▶ Zn(1) auf 8c: 9+1
 - Zn(2) auf 24q: 11
 - \triangleright Cu(1) auf 8c: 12 (Ikosaeder)
 - Cu(2) auf 12e: 12

mischkristalle

Kugelpackungen

Eigenschaften

HUME-BOTHERY-Phasen

Einleitung

Phasenfolgen

Strukturchemie

elektronische Strukturen

Eigenschaften. Verwendung

$\gamma\textsc{-Messing:}$ Beschreibung über Raumparkettierung

Gruppe-Untergruppe-Stammbaum mit i27 (!!) Symmetrieabstieg

4. Substitutionsmischkristalle, HUME-ROTHERY-Phasen

Substitutionsmischkristalle

Einleitung

Ordnungsvarianten

Prinzip

...von b.c.c.

...dichtester Kugelpackungen

O/D-Phasenübergänge

physikalische Eigenschaften

HUME-ROTHERY-Phasen

Einleitung

Phasenfolgen

Strukturchemie

elektronische Strukturen

Eigenschaften, Verwendung

Struktur von γ -Messing

- Schalen¹ um 'Loch': iT (4, violett) oT (4, blau) O (6, schwarz) CO (12, rot) → 26 Atome
- iT = gemeinsames Tetraeder von vier einander durchdringenden Ikosaedern
- ▶ rote Zn-Atome bilden äußeres Kuboktaeder (CO)
- \blacktriangleright Packung der Kubokta
eder \Uparrow (vgl. f.c.c., b.c.c., $\alpha\text{-Mn}$ aus Stunde 1)

zurück zu den Phasenfolgen

iT: inner tetrahedron; oT: outer tetrahedron; O: octahedron; CO: cuboactahedron

4. Substitutionsmischkristalle, HUME-ROTHERY-Phasen

Substitutionsmischkristalle

Einleitung

Ordnungsvarianten

Prinzip

...von b.c.c.

...dichtester Kugelpackungen

O/D-Phasenübergänge

physikalische Eigenschaften

HUME-ROTHERY-Phasen

Einleitung

Phasenfolgen

Strukturchemie

elektronische Strukturen

Eigenschaften, Verwendung

Struktur von ζ -Messing

▶ $hP26, P6_3/m$

▶ a = 730 pm, c = 790 pm

Atomlagen (geordnet !)

6 Sn: $CN = 11 + 2 Cu (h.c.p., aufgeweitet^1)$

12 Cu(1): CN = 4 Cu + 4 Sn (in allen TL)

2 Cu(2): CN = 6 Cu + 6 Sn $(\frac{1}{3}$ OL, ideal \mapsto Ikosaeder!)

4 Cu(3): CN = 7 Cu + 3 Sn
$$(\frac{2}{3}$$
 OL, verschoben!)

2 Cu(4): CN = 8 Cu + 3 Sn (trigonal planar, gem. Oktaederflächen)

zurück zu den Phasenfolgen

4. Substitutionsmischkristalle, HUME-ROTHERY-Phasen

Substitutionsmischkristalle

Einleitung

Ordnungsvarianten

Prinzip

...von b.c.c.

...dichtester Kugelpackungen

O/D-Phasenübergänge

physikalische Eigenschaften

HUME-ROTHERY-Phasen

Einleitung

Phasenfolgen

Strukturchemie

elektronische Strukturen

Eigenschaften, Verwendung

Zusammenfassung

¹ vgl. f.c.c. der HEUSLER-Phasen

Struktur von η' -Messing (Cu₆Sn₅)

4. Substitutionsmischkristalle, HUME-ROTHERY-Phasen

Substitutions-

mischkristalle

Einleitung

Ordnungsvarianten

Prinzip

Phasen Einleitung Phasenfolgen Strukturchemie elektronische Strukturen

...von b.c.c. ...dichtester Kugelpackungen O/D-Phasenübergänge physikalische Eigenschaften Hung-ROTHERY-

Eigenschaften, Verwendung Zusammenfassung

Einleitung

Ordnungsvarianten

Prinzip ...von b.c.c. ...dichtester Kugelpackung)/D-Phasenübergänge

physikalische Eigenschaften

2 HUME-ROTHERY-Phasen

Einleitung Phasenfolgen Strukturchemie elektronische Strukturen

Eigenschaften, Verwendung

3 Zusammenfassung

4. Substitutionsmischkristalle, HUME-ROTHERY-Phasen

Substitutionsmischkristalle

Einleitung

Ordnungsvarianten

Prinzip

...von b.c.c.

...dichtester Kugelpackungen

O/D-Phasenübergänge

physikalische Eigenschaften

HUME-ROTHERY-Phasen

Einleitung

Phasenfolgen

Strukturchemie

elektronische Strukturen

Eigenschaften, Verwendung

Historisches

NEVILL FRANCIS MOTT² (1905-1996)

HARRY JONES³ (1905-1986)

1928: HUME-ROTHERY \mapsto Abhängigheit von v.e.c. 1936: MOTT/JONES \mapsto Erklärung mit NFE-Ansatz¹:

bobo Stabilität, wann EEDM Eläaba PZ garada bo

- ▶ hohe Stabilität, wenn FERMI-Fläche BZ gerade berührt → 'FERMI surface/Brillouin zone nesting'
- Minimierung der Bandenergie
- \blacktriangleright kubische Symmetrie passend zur Kugel der freien e^-
- Grenzen nach MOTT/JONES
 - 1.36 für f.c.c. (Berührung der {111}-Fläche bei L)
 - 1.48 für b.c.c. ({110}-Fläche, N-Punkt)

- danach jeweils neue Struktur, bei der die FERMI-Kugel gerade die Wände einer BZ berührt
 - 1.538 für γ-Messing (s.u.)

1937: JONES: Rechnungen ohne d-Bänder \mapsto falsche v.e.c. 1983: CAHN u.a.: noch keine Erklärung der Phasenfolge

¹ N. F. Mott, H. Jones: The theory of the properties of metals and alloys, Intern. series of monographs on physics, Oxford (1936). ² https://www.npg.org.uk/; ³ http://www.jstor.org/stable/769955 4. Substitutionsmischkristalle, HUME-ROTHERY-Phasen

Substitutionsmischkristalle

Einleitung

Ordnungsvarianten

Prinzip

...von b.c.c.

...dichtester Kugelpackungen

O/D-Phasenübergänge

physikalische Eigenschaften

HUME-ROTHERY-Phasen

Einleitung

Phasenfolgen

Strukturchemie

elektronische Strukturen

Eigenschaften, Verwendung

Erklärung I: β -Messing (mit aktueller Theorie¹)

- α : mit Zn-Gehalt verändert sich FERMI-Fläche wie für NFE zu erwarten (nur wenig über L hinaus besetzt, s. reines Cu in 2. Stunde)
- β ': geordnete Phase CuZn (cP2)
 - ▶ fast komplette Füllung der 1. BZ des kubisch P (!)-Gitters (Band 11)
 - leichte Besetzung von Band 12
 - ▶ DOS mit Pseudo-Bandgap etwas oberhalb E_F
 - d-Zustände von Cu relevant!

t/p-DOS von CuZn (geordnet)¹

11. Band: BZ weitgehend gefüllt

12. Band: BZ kaum besetzt

4. Substitutionsmischkristalle, HUME-ROTHERY-Phasen

Substitutionsmischkristalle

Einleitung

Ordnungsvarianten

Prinzip

...von b.c.c.

...dichtester Kugelpackungen

O/D-Phasenübergänge

physikalische Eigenschaften

HUME-ROTHERY-Phasen

Einleitung

Phasenfolgen

Strukturchemie

elektronische Strukturen

Eigenschaften, Verwendung

¹ FP-APW, PBE-GGA, Programm WIEN2K, 50000 k-Punkte

Erklärung II: γ -Messing (mit aktueller Theorie)

- γ : **b**.c.c.-Überstruktur mit großer kubischer Zelle cI52 (s.o.)
 - kleine 1. BZ
 - ▶ JONES-Zone aus {114} (blau) und {330} (rote) Flächen (starke Reflexe!)
 - ▶ Berührung einer Kugel entsprechend 1.54 e^- /Atom (80 e^- /EZ, 40 × V^* (1. BZ))
 - DOS mit ausgeprägtem Pseudo-Bandgap
 - Abfall der DOS \mapsto kleiner SOMMERFELD-Parameters $\gamma \mapsto$ geringe Wärmekapazität c_e

¹ FP-APW, PBE-GGA, Programm WIEN2K, 50000 k-Punkte

4. Substitutionsmischkristalle, HUME-ROTHERY-Phasen

Substitutionsmischkristalle

Einleitung

Ordnungsvarianten

Prinzip

...von b.c.c.

...dichtester Kugelpackungen

O/D-Phasenübergänge

physikalische Eigenschaften

HUME-ROTHERY-Phasen

Einleitung

Phasenfolgen

Strukturchemie

elektronische Strukturen

Eigenschaften, Verwendung

Einleitung

Ordnungsvarianten

Prinzip ...von b.c.c. ...dichtester Kugelpackunger D/D-Phasenübergänge

physikalische Eigenschaften

2 HUME-ROTHERY-Phasen

Einleitung Phasenfolgen Strukturchemie elektronische Strukturen Eigenschaften, Verwendung

3 Zusammenfassung

4. Substitutionsmischkristalle, HUME-ROTHERY-Phasen

Substitutionsmischkristalle

Einleitung

Ordnungsvarianten

Prinzip

...von b.c.c.

...dichtester Kugelpackungen

O/D-Phasenübergänge

physikalische Eigenschaften

HUME-ROTHERY-Phasen

Einleitung

Phasenfolgen

Strukturchemie

elektronische Strukturen

Eigenschaften, Verwendung

Eigenschaften und Verwendung von Messing und Bronze

Messing (Cu–Zn)

- ▶ ca. 20 % Zn = 'Rotmessing', dehnbar \mapsto Plättchen: unechtes Blattgold
- ▶ 20-40 % Zn = 'Gelbmessing', → Maschinenteile
- ▶ 80 % Zn = 'Weißmessing', spröde, kann nur gegossen werden
- kontinuierliche Änderung des E-Moduls, aber γ-Phase steifer

E-Module von Messing und Bronze

Glanz/Farben s. Filmchen 'Geld fälschen'

 ca. 7 Gew.-% (3 Atom-%) Sn: 'Knetlegierungen', umformbar, für zähfeste Maschinenteile Ψ, reine α-Phase

- Phosphorbronze' 7 % Sn+0.5 %
 P → zähfeste Maschinenteile,
 Achsenlager, Gitarrensaiten
- ▶ 20-25 Gew.-% (13 Atom-%) Sn: 'Glockenbronze' \Rightarrow ,

'Gusslegierungen', elastisch, zäh, korrosionsbeständig

4. Substitutionsmischkristalle, HUME-ROTHERY-Phasen

Substitutionsmischkristalle

Einleitung

Ordnungsvarianten

Prinzip

...von b.c.c.

...dichtester Kugelpackungen

O/D-Phasenübergänge

physikalische Eigenschaften

HUME-ROTHERY-Phasen

Einleitung

Phasenfolgen

Strukturchemie

elektronische Strukturen

Eigenschaften, Verwendung

Zusammenfassung

alle %-Angaben in Gewichts-%

Glockenbronze, oder Warum die Glocke 'bimm' macht?¹

Gefüge einer armenischen Glocke, 18% Sn²

¹s. Seite 35 der 3. Vorlesung von C. Hoch;

²O. Oudbashi, Z. Khoobroo, Z. Khachatour, *Microscopy Microanalysis* 29, 1298 (2023).

Prozesse beim Abkühlen der Glocke aus der Schmelze

- aus der Schmelze kristallisiert α (f.c.c.)
- **2** ab hier kristallisiert zusätzlich β (b.c.c.)
- γ zerfällt in α und δ (6×6×6-b.c.c.-Überstruktur)
- $\Leftarrow Gefüge aus \alpha \text{ (f.c.c.) hoher Dichte}$ $und \delta \text{ (b.c.c.) geringerer Dichte}$
- $\mapsto \mbox{ mechanische Spannung durch} \\ \mbox{ Dichteunterschiede } \label{eq:expectation}$

4. Substitutionsmischkristalle, HUME-ROTHERY-Phasen

Substitutionsmischkristalle

Einleitung

Ordnungsvarianten

Prinzip

...von b.c.c.

...dichtester Kugelpackungen

O/D-Phasenübergänge

physikalische Eigenschaften

HUME-ROTHERY-Phasen

Einleitung

Phasenfolgen

Strukturchemie

elektronische Strukturen

Eigenschaften, Verwendung

Eigenschaften und Verwendung weiterer Bronzen

- ▶ Pb-Bronze: bis 26 % Pb
 - ► → Formengießen, Gleitwerkstoffe
- ▶ Al-Bronzen: 5-12 % Al
 - ▶ zäher und härter als Cu \mapsto Waagebalken, Uhrfedern
- ▶ Be-Bronzen: ca. 2 % Be
 - ▶ hart, elastisch, aber giftig \mapsto Federn, Uhren, funkenfreie Werkzeuge

'Leitbronze'

- ▶ + Mg, Cd, Zn (insgesamt 3 %)
- elektrische Eigenschaften ähnlich Kupfer, jedoch zugfester
- \blacktriangleright \mapsto Freileitungen, Starkstromanlagen
- ▶ Si-Bronze: 1−2 % Si
 - mechanisch und chemisch hoch beanspruchbar, hohe elektr. Leitfähigkeit
 - ► → Oberleitungen, Schleifkontakte, Chemische Industrie, Verbindungsmittel im Schiffbau

Ni-Bronzen

▶ ...

- ▶ 40 % Ni (Konstantan): elektrischer Widerstand *T*-unabhängig
- 67 % Ni (Monellmetall): F₂-beständig (Anlagenbau)
- viele viele weitere Infos s. https://kupfer.de/mediathek/

4. Substitutionsmischkristalle, HUME-ROTHERY-Phasen

Substitutionsmischkristalle

Einleitung

Ordnungsvarianten

Prinzip

...von b.c.c.

...dichtester Kugelpackungen

O/D-Phasenübergänge

physikalische Eigenschaften

HUME-ROTHERY-Phasen

Einleitung

Phasenfolgen

Strukturchemie

elektronische Strukturen

Eigenschaften, Verwendung

Einleitung

Ordnungsvarianten

Prinzip ...von b.c.c. ...dichtester Kugelpackunge D/D-Phasenübergänge

physikalische Eigenschaften

2 HUME-ROTHERY-Phasen

Einleitung

Phasenfolgen

Strukturchemie

elektronische Strukturen

Eigenschaften, Verwendung

3 Zusammenfassung

4. Substitutionsmischkristalle, HUME-ROTHERY-Phasen

Substitutionsmischkristalle

Einleitung

Ordnungsvarianten

Prinzip

...von b.c.c.

...dichtester Kugelpackungen

O/D-Phasenübergänge

physikalische Eigenschaften

HUME-ROTHERY-Phasen

Einleitung

Phasenfolgen

Strukturchemie

elektronische Strukturen

Eigenschaften, Verwendung

Zusammenfassung

- ▶ nur sehr ähnliche Metalle (fast gleicher Radius, gleiche v.e.-Zahl) lückenlos ineinander mischbar → Substitutionsmischkristalle
- ▶ bei kleineren Abweichungen vor allem der Radien (10-15 %) \mapsto Mischbarkeit nur bei hohen Temperaturen
- ▶ bei tieferen Temperaturen → Ordnungsvarianten (Symmetrieabbau, kristallographische Untergruppen der Basis-Metallstrukturen)
- \blacktriangleright bei Abweichungen in den v.e.-Zahlen \mapsto nur noch Randlöslichkeiten
- ▶ Phasenfolge = $f(v.e.c.) \mapsto Beobachtung von W. HUME-ROTHERY$
- von v.e.c. = 1 bis 2: f.c.c. (β-Mn) b.c.c. h.c.p. (mit div. Ordnungsvarianten)
- ▶ Erklärung (MOTT/JONES): FERMI-Kugel innerhalb einer BZ → niedrigere Bandenergien

Ausblick:

▶ nächste Woche (21.05.2025): CH: Packungen bei deutlichen Unterschieden in den Radien der Atome \mapsto FRANK-KASPER-Phasen, LAVES-Phasen 4. Substitutionsmischkristalle, HUME-ROTHERY-Phasen

Substitutionsmischkristalle

Einleitung

Ordnungsvarianten

Prinzip

...von b.c.c.

...dichtester Kugelpackungen

O/D-Phasenübergänge

physikalische Eigenschaften

HUME-ROTHERY-Phasen

Einleitung

Phasenfolgen

Strukturchemie

elektronische Strukturen

Eigenschaften, Verwendung

Pingo-Link

https://pingo.coactum.de/events/802805/

4. Substitutionsmischkristalle, HUME-ROTHERY-Phasen

Substitutionsmischkristalle

Einleitung

Ordnungsvarianten

Prinzip

...von b.c.c.

...dichtester Kugelpackungen

O/D-Phasenübergänge

physikalische Eigenschaften

HUME-ROTHERY-Phasen

Einleitung

Phasenfolgen

Strukturchemie

elektronische Strukturen

Eigenschaften, Verwendung