Magnetmaterialien

Magnetmaterialien

- Grundlagen - Materialien - Anwendungen -

LA-FP Seminar, 2.2013, C.Röhr

Physikalische Eigenschaften von Festkörpern

Grundlagen des Magnetismus

Physikalische Grundlagen

Atomarer Magnetismus

kollektiver Magnetismus

Messung magnetischer Eigenschaften

'Magnetische Messungen' (SQUID-Magnetometer)

Mößbauerspektroskopie

Spinstrukturen mittels *n*-Beugung

Materialien

Metalle und Legierungen

Oxide

Anwendungen

Zusammenfassung

Literatur

Physikalische Eigenschaften von Festkörpern

Grundlagen des Magnetismus

Physikalische Grundlagen

Atomarer Magnetismus

kollektiver Magnetismus

Messung magnetischer Eigenschaften

'Magnetische Messungen' (SQUID-Magnetometer)

Mößbauerspektroskopie

Spinstrukturen mittels *n*-Beugung

Materialien

Metalle und Legierungen

Oxide

Anwendunger

Zusammenfassung

Literatur

1. Transporteffekte

- dynamischer Response; Abweichungen vom Gleichgewicht
- ► Einwirkung äußerer Gradienten → Masse-, Energie-, Teilchen- ... Fluß

2 Polarisationseffekte

- statischer Response: im Gleichgewicht
- hoher Widerstand, kein Transport
- Einwirkung äußerer Gradienten → Änderung der Eigenschaften (Magnetisierung, Entropie ...)

1. Transporteffekte

- dynamischer Response; Abweichungen vom Gleichgewicht
- ► Einwirkung äußerer Gradienten → Masse-, Energie-, Teilchen- ... Fluß

2. Polarisationseffekte

- statischer Response; im Gleichgewicht
- hoher Widerstand, kein Transport
- Einwirkung äußerer Gradienten → Änderung der Eigenschaften (Magnetisierung, Entropie ...)
- ► allgemeine Formel:

$$\chi^{YX} = \frac{\delta Y}{\delta X}$$
 bzw. $\delta Y = \chi^{YX} \delta X$

- Änderung einer äußeren Größe X → Änderung der Materialeigenschaft Y
 - ▶ häufig linearer Zusammenhang (besonders bei kleiner, langsamer Änderung)
 - z.B. Spannung Dehnung: Hook'sches Gesetz

1. Transporteffekte

- dynamischer Response; Abweichungen vom Gleichgewicht
- ► Einwirkung äußerer Gradienten → Masse-, Energie-, Teilchen- ... Fluß

2. Polarisationseffekte

- statischer Response; im Gleichgewicht
- hoher Widerstand, kein Transport
- Einwirkung äußerer Gradienten → Änderung der Eigenschaften (Magnetisierung, Entropie ...)
- allgemeine Formel:

$$\chi^{YX} = \frac{\delta Y}{\delta X}$$
 bzw. $\delta Y = \chi^{YX} \delta X$

- ▶ Änderung einer äußeren Größe X → Änderung der Materialeigenschaft Y
 - häufig linearer Zusammenhang (besonders bei kleiner, langsamer Änderung)
 - z.B. Spannung Dehnung: Hook'sches Gesetz
- \sqrt{X}, Y
 - Material'konstante' für X/Y
 - ▶ ie nach X/Y → unterschiedliche Namer
 - \triangleright X/Y richtungsabhängig (z.B. Vektoren) $\mapsto \gamma$ höherer Tensor
 - zusätzlich frequenzabhängig

1. Transporteffekte

- dynamischer Response; Abweichungen vom Gleichgewicht
- ► Einwirkung äußerer Gradienten → Masse-, Energie-, Teilchen- ... Fluß

Polarisationseffekte

- statischer Response; im Gleichgewicht
- hoher Widerstand, kein Transport
- Einwirkung äußerer Gradienten → Änderung der Eigenschaften (Magnetisierung, Entropie ...)
- allgemeine Formel:

$$\chi^{YX} = \frac{\delta Y}{\delta X}$$
 bzw. $\delta Y = \chi^{YX} \delta X$

- ightharpoonup Änderung einer äußeren Größe X \mapsto Änderung der Materialeigenschaft Y
 - häufig linearer Zusammenhang (besonders bei kleiner, langsamer Änderung)
 - z.B. Spannung Dehnung: Hook'sches Gesetz
- $\lambda \chi^{X,Y}$
 - ► Material'konstante' für X/Y
 - ▶ je nach X/Y → unterschiedliche Namen
 - \blacktriangleright X/Y richtungsabhängig (z.B. Vektoren) $\mapsto \chi$ höherer Tensor
 - zusätzlich frequenzabhängig

Polarisation: Übersichtstabelle

$X \Rightarrow$	Temperatur	elektrisches Feld	Magnetfeld	mechanische Spannung
↓ Y	T [K]	E_i [V/m]	$H_i [Vs/m^2]$	$\sigma_{i,j}$
Entropie	Wärmekapazität	elektrokalorischer Effekt	magnetokalorischer Effekt	5.0 50
S [J/m²s]	$\chi^{ST} = c_p = \frac{\delta S}{\delta T} T$	$\chi_i^{SE} = \frac{\delta S}{\delta E}$	$\chi_i^{SH} = \frac{\delta S}{\delta H}$	$\chi_{i,j}^{S\sigma} = \frac{\delta S}{\delta \sigma}$
elektrische Pola- risation	pyroelektrischer Effekt	elektrische Suszeptibili- tät	magnetoelektr. Efffekt	piezoelektrischer Effekt
$P_k [Asm^2]$	$\chi_k^{PT} = \frac{\delta P}{\delta T}$	$\chi_{i,k}^{PE} = \frac{\delta P}{\delta E}$	$\chi_{i,k}^{PH} = \frac{\delta P}{\delta H}$	$\chi_{i,j,k}^{P\sigma} = \frac{\delta P}{\delta \sigma}$
		., 02	., 011	piezoelektrische Mo- duln
Magneti- sierung	pyromagnetischer Effekt	elektromagnetischer Effekt	bilität	fekt
M_k [A/m]	$\chi_k^{MT} = \frac{\delta M}{\delta T}$	$\chi_{i,k}^{ME} = \frac{\delta M}{\delta E}$	$\chi_{i,k}^{MH} = \frac{\chi}{\mu} = \frac{\delta M}{\delta H}$	$\chi_{i,j,k}^{M\sigma} = \frac{\delta P}{\delta \sigma}$
				piezomagnetische Mo- duln
mecha- nische Deforma- tion	thermische Ausdehnung	on)	magnetischer Effekt	Spannungstensor
$\epsilon_{k,I}$	$\chi_{k,l}^{\epsilon T} = \alpha_{k,l} = \frac{\delta \epsilon}{\delta T}$	$\chi_{i,k,l}^{\epsilon E} = \frac{\delta \epsilon}{\delta E}$	$\chi_{i,k,l}^{\epsilon H} = \frac{\chi}{\mu} = \frac{\delta \epsilon}{\delta H}$	$\chi_{i,j,k,l}^{\epsilon\sigma} = \frac{\delta\epsilon}{\delta\sigma}$
	thermischer Ver-			
	zerrungstensor	duln	duln	moduln

Zusammenfassung Tabelle

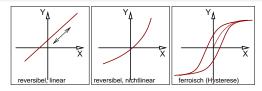
Diagonalelemente:

- direkte Eigenschaftsänderungen
- ▶ Linearität → einfacher 'Normalfall' der Physik

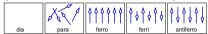
Nebendiagonalen

- zunächst 'unerwartete' Sekundäreffekte
- ► für Anwendungen interessant
- ▶ Umwandlung von Energier
 - ▶ pyroelektrischer Effekt: Wärme ⇒ elektrische Spannung
 - ▶ piezoelektrischer Effekt: E-Feld ⇒ mechanische Deformation

Zusammenfassung Tabelle


Diagonalelemente:

- direkte Eigenschaftsänderungen
- ▶ Linearität → einfacher 'Normalfall' der Physik


Nebendiagonalen:

- zunächst 'unerwartete' Sekundäreffekte
- für Anwendungen interessant
- Umwandlung von Energien
 - ▶ pyroelektrischer Effekt: Wärme ⇒ elektrische Spannung
 - ▶ piezoelektrischer Effekt: *E*-Feld ⇒ mechanische Deformation

Abweichungen von der Linearität → Ferroische Eigenschaften

- ▶ praktisch interessant vor allem für Hauptdiagonale (direkte Effekte)
- nur für Spalten 2-4 (beide Größen richtungsabhängig)

- jeweils für elektrische, magnetische und mechanische Felder
 - dia: keine Polarisation möglich (M: diamagnetische Stoffe wie NaCl)
 - para: Polarisation möglich, aber nicht vorhanden
 - ...-elektrisch: alle Dipole statistisch verteilt
 - ...-magnetisch: alle Spins (Ionen) statistisch verteilt
 - ▶ Hochtemperaturform-Formen (> $T_{C,N}$) aller weiteren Ausrichtungen ↓
 - ▶ ferro: Polarisation vorhanden, umkehrbar, mit Hysterese
 - antiferro: durch Kopplung der Polarisationen gegensinnige Ausrichtung
 keine resultierende Gesamtpolarisation, keine Hysterese
 - ferri: gegensinnige Ausrichtung, aber unterschiedlich große Polarisation

Physikalische Eigenschaften von Festkörperr

Grundlagen des Magnetismus Physikalische Grundlagen Atomarer Magnetismus kollektiver Magnetismus

Messung magnetischer Eigenschaften

'Magnetische Messungen' (SQUID-Magnetometer Mößhauerspektroskopie

Spinstrukturen mittels n-Beugung

Materialien

Metalle und Legierungen

Oxide

Anwendunger

Zusammenfassung

Literatur

- ▶ im Vakuum
 - ▶ magnetische Feldstärke (Erregung): H (in $[T = Vs/m^2]$)
 - ightharpoonup magnetische Induktion (Flußdichte): B (in [A/m])
 - ► $B = \mu_o H$ mit der magnetischen Feldkonstante $\mu_0 = 4\pi \cdot 10^{-7} \text{Vs/Am}$
- ▶ mit Materie (im homogenen *H*-Feld)
 - ▶ statt $B = B_{aussen}$ ist im Innern des Stoffes: $B_{innen} = \mu_r B_{aussen}$ ②

- ▶ im Vakuum
 - ▶ magnetische Feldstärke (Erregung): H (in $[T = Vs/m^2]$)
 - ightharpoonup magnetische Induktion (Flußdichte): <math>B (in [A/m])
 - ► $B = \mu_o H$ mit der magnetischen Feldkonstante $\mu_0 = 4\pi \cdot 10^{-7} \text{Vs/Am}$
- mit Materie (im homogenen H-Feld)
 - ▶ statt $B = B_{aussen}$ ist im Innern des Stoffes: $B_{innen} = \mu_r B_{aussen}$ ②
 - $\mu_r = \frac{B_{innen}}{B_{aussen}}$ (dimensionslos) = <u>Permeabilität</u> = 'Durchlässigkeit' (1)
 - ► magnetische Polarisation J = im Stoff hinzukommende/wegfallende Induktion: J = Binnen Baussen
 ⑤

- ▶ im Vakuum
 - ▶ magnetische Feldstärke (Erregung): H (in $[T = Vs/m^2]$)
 - ightharpoonup magnetische Induktion (Flußdichte): B (in [A/m])
 - ► $B = \mu_o H$ mit der magnetischen Feldkonstante $\mu_0 = 4\pi \cdot 10^{-7} \text{Vs/Am}$
- mit Materie (im homogenen H-Feld)
 - ▶ statt $B = B_{aussen}$ ist im Innern des Stoffes: $B_{innen} = \mu_r B_{aussen}$ ②
 - $\mu_r = \frac{B_{innen}}{B_{aussen}}$ (dimensionslos) = <u>Permeabilität</u> = 'Durchlässigkeit' (1)
 - magnetische Polarisation J = im Stoff hinzukommende/wegfallendeInduktion: $J = B_{innen} B_{aussen}$
 - ▶ 2 in 3 einsetzen: $J = (\mu_r 1)B_{aussen}$
 - ► J (in [A/m]) $\propto B_{aussen}$: $J = \chi_V B_{aussen}$
 - Proportionalitätsfaktor $\chi = \underline{\text{magnetische Suzeptibilität}} = \text{`Aufnahmefähigkeit'} (0)$

- ▶ im Vakuum
 - ▶ magnetische Feldstärke (Erregung): H (in $[T = Vs/m^2]$)
 - ightharpoonup magnetische Induktion (Flußdichte): B (in [A/m])
 - ► $B = \mu_o H$ mit der magnetischen Feldkonstante $\mu_0 = 4\pi \cdot 10^{-7} \text{Vs/Am}$
- mit Materie (im homogenen H-Feld)
 - ▶ statt $B = B_{aussen}$ ist im Innern des Stoffes: $B_{innen} = \mu_r B_{aussen}$ **2**
 - $\mu_r = \frac{B_{innen}}{B_{aussen}}$ (dimensionslos) = <u>Permeabilität</u> = 'Durchlässigkeit' (1)
 - ► magnetische Polarisation J = im Stoff hinzukommende/wegfallende Induktion: J = B_{innen} B_{aussen} **②**
 - ▶ ② in ③ einsetzen: $J = (\mu_r 1)B_{aussen}$ ④
 - ► J (in [A/m]) $\propto B_{aussen}$: $J = \chi_V B_{aussen}$
 - Proportionalitätsfaktor $\chi = \frac{\text{magnetische Suzeptibilität}}{\text{'Aufnahmefähigkeit'}}$
 - durch Vergleich von $oldsymbol{\Phi}$ und $oldsymbol{\Theta}$ folgt $\chi_V = \mu_r 1$

- im Vakuum
 - ▶ magnetische Feldstärke (Erregung): H (in $[T = Vs/m^2]$)
 - ightharpoonup magnetische Induktion (Flußdichte): B (in [A/m])
 - ► $B = \mu_o H$ mit der magnetischen Feldkonstante $\mu_0 = 4\pi \cdot 10^{-7} \text{Vs/Am}$
- mit Materie (im homogenen H-Feld)
 - ▶ statt $B = B_{aussen}$ ist im Innern des Stoffes: $B_{innen} = \mu_r B_{aussen}$ ②
 - $\mu_r = \frac{B_{innen}}{B_{aussen}}$ (dimensionslos) = <u>Permeabilität</u> = 'Durchlässigkeit' (1)
 - <u>magnetische Polarisation J</u> = im Stoff hinzukommende/wegfallende
 Induktion: J = B_{innen} − B_{aussen}
 - ▶ ② in ③ einsetzen: $J = (\mu_r 1)B_{aussen}$ ④
 - ► J (in [A/m]) $\propto B_{aussen}$: $J = \chi_V B_{aussen}$
 - Proportionalitätsfaktor $\chi = \frac{\text{magnetische Suzeptibilität}}{\text{'Aufnahmefähigkeit'}}$
 - ▶ durch Vergleich von **4** und **5** folgt $\chi_V = \mu_r 1$ **6**
 - ▶ für *J* folgt insgesamt:

$$J = B_{innen} - B_{aussen} = (\mu_r - 1)B_{aussen} = \chi_V B_{aussen} = \chi_V \mu_0 H$$

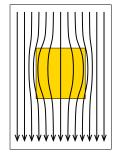
- ▶ im Vakuum
 - ▶ magnetische Feldstärke (Erregung): H (in $[T = Vs/m^2]$)
 - ightharpoonup magnetische Induktion (Flußdichte): B (in [A/m])
 - ► $B = \mu_o H$ mit der magnetischen Feldkonstante $\mu_0 = 4\pi \cdot 10^{-7} \text{Vs/Am}$
- mit Materie (im homogenen H-Feld)
 - statt $B = B_{aussen}$ ist im Innern des Stoffes: $B_{innen} = \mu_r B_{aussen}$
 - $\mu_r = \frac{B_{innen}}{B_{aussen}}$ (dimensionslos) = <u>Permeabilität</u> = 'Durchlässigkeit' (1)
 - ► magnetische Polarisation J = im Stoff hinzukommende/wegfallende Induktion: J = B_{innen} B_{aussen} **⑤**
 - ▶ **②** in **③** einsetzen: $J = (\mu_r 1)B_{aussen}$ **④**
 - ► J (in [A/m]) $\propto B_{aussen}$: $J = \chi_V B_{aussen}$
 - Proportionalitätsfaktor $\chi = \frac{\text{magnetische Suzeptibilität}}{\text{'Aufnahmefähigkeit'}}$
 - ▶ durch Vergleich von **4** und **5** folgt $\chi_V = \mu_r 1$ **6**
 - ▶ für *J* folgt insgesamt:

$$J = B_{innen} - B_{aussen} = (\mu_r - 1)B_{aussen} = \chi_V B_{aussen} = \chi_V \mu_0 H$$

Magnetisierung M [A/m] (Bezug zum äußeren Feld): $M = \frac{J}{\mu_0} = \chi_m F$

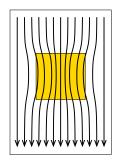
- im Vakuum
 - ▶ magnetische Feldstärke (Erregung): H (in $[T = Vs/m^2]$)
 - ightharpoonup magnetische Induktion (Flußdichte): B (in [A/m])
 - ► $B = \mu_o H$ mit der magnetischen Feldkonstante $\mu_0 = 4\pi \cdot 10^{-7} \text{Vs/Am}$
- ▶ mit Materie (im homogenen H-Feld)
 - ▶ statt $B = B_{aussen}$ ist im Innern des Stoffes: $B_{innen} = \mu_r B_{aussen}$ ②
 - $\mu_r = \frac{B_{innen}}{B_{aussen}}$ (dimensionslos) = Permeabilität = 'Durchlässigkeit' (1)
 - <u>magnetische Polarisation J</u> = im Stoff hinzukommende/wegfallende
 Induktion: J = B_{innen} − B_{aussen}
 - ▶ **②** in **③** einsetzen: $J = (\mu_r 1)B_{aussen}$ **④**
 - ► J (in [A/m]) $\propto B_{aussen}$: $J = \chi_V B_{aussen}$
 - Proportionalitätsfaktor $\chi = \frac{\text{magnetische Suzeptibilität}}{\text{Aufnahmefähigkeit'}}$ (0)
 - durch Vergleich von **4** und **5** folgt $\chi_V = \mu_r 1$ **6**
 - ▶ für J folgt insgesamt:

$$J = B_{innen} - B_{aussen} = (\mu_r - 1)B_{aussen} = \chi_V B_{aussen} = \chi_V \mu_0 H$$


► Magnetisierung M [A/m] (Bezug zum äußeren Feld): $M = \frac{J}{\mu_0} = \chi_m H$

- ... je nach
 - Größe/Vorzeichen von μ (1) und χ (0)
 - ▶ Temperatur-Abhängigkeit dieser Größen →

 \dots verschiedene Substanzgruppen/Arten des Magnetismus \Downarrow


Diamagnetismus

- ► Eigenschaft <u>aller</u> Substanzen
- ► Prinzip
 - angelegtes äußeres Magnetfeld H
 - induziert zusätzliche Elektronenbewegung = Magnetfeld in allen Atomen
 - nach Lenz'scher Regel entgegengesetzt zum angelegten Feld
 - ▶ Größe = f(Abstand der e⁻ vom Kern)
 - Resultat: Feldliniendichte im Inneren geringer
 - ► Feld wird aus Material herausgedrängt
 - Material wird vom Magnetfeld abgestossen
- ho χ < 0 bzw. μ < 1
- sehr schwacher Effekt: $\chi_V = -10^{-5}$ bis -10^{-6}
- temperaturunabhängig
- ► Feld-unabhängig

Paramagnetismus

- ▶ Substanzen mit ungepaarten Elektronen
 - ▶ Übergangsmetall- und Lanthanoid-Verbindungen
 - elementare Metalle (Pauli-Paramagnetismus)
- ► Prinzip:
 - Ausrichtung von Elementarmagneten (e⁻-Spin/Bahn) im äußeren Feld
 - Verstärkung der Feldlinien im Innern
 - Feld wird in Material hineingezogen
 - Material wird in Feld hineingezogen
- $\lambda \chi > 0$ bzw. $\mu > 1$
- schwacher Effekt: $\chi_V = +10^{-5}$ bis $+10^{-3}$

Paramagnetismus von Übergangsmetall-Ionen

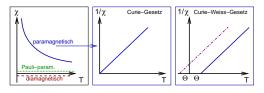
- keinste Einheit: 1 BM = $\mu_B = \frac{e\hbar}{2m_e}$
- ▶ Spinanteil: $\mu_S = g\sqrt{S(S+1)}$ (g = 2; S = Gesamtspin)

(z.B. für 1e⁻:
$$2\sqrt{\frac{1}{2}(\frac{1}{2}+1)} = 1.73 \ \mu_B$$
)

- ▶ Bahnanteil: $\mu_L = \sqrt{L(L+1)}$
- ▶ bei 3*d*-Metallen praktisch nur Spinanteil wichtig ('Spin-only'-Werte)
- ▶ Faustregel: $\mu_B = \text{Zahl ungepaarter } e^- + 1$
- ▶ passend für frühe 3*d*-Metalle, ab *d*⁶ leichte Abweichungen
- für alle kooperativen Effekte (s.u.) genaue Werte nicht wichtig
- ▶ die wichtigsten Ionen für ferroische Materialien ↓

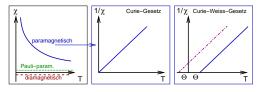
Ion	e^- -Konfiguration			
∨4+	d^1	$^{2}D_{\frac{3}{2}}$	1.73	1.8
√3+		$^{3}F_{2}^{^{2}}$	2.83	2.8
V ²⁺ , Cr ³⁺		4F3	3.87	
Mn ³⁺ , Cr ²⁺	HS-d ⁴	$^{5}D_{0}^{2}$	4.9	4.9
Mn ²⁺ , Fe ³⁺	HS-d ⁵	⁶ S _{5/2}	5.92	5.9
Fe ²⁺	HS-d ⁶	$^{5}D_{4}$	4.90	5.4

Paramagnetismus von Übergangsmetall-Ionen

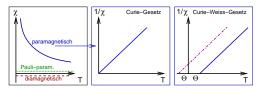

- keinste Einheit: 1 BM = $\mu_B = \frac{e\hbar}{2m_e}$
- ▶ Spinanteil: $\mu_S = g\sqrt{S(S+1)}$ (g = 2; S = Gesamtspin)

(z.B. für
$$1e^-$$
: $2\sqrt{\frac{1}{2}(\frac{1}{2}+1)}=1.73~\mu_B$)

- ▶ Bahnanteil: $\mu_L = \sqrt{L(L+1)}$
- ▶ bei 3*d*-Metallen praktisch nur Spinanteil wichtig ('Spin-only'-Werte)
- Faustregel: $\mu_B = \text{Zahl ungepaarter } e^- + 1$
- ▶ passend für frühe 3*d*-Metalle, ab *d*⁶ leichte Abweichungen
- ▶ für alle kooperativen Effekte (s.u.) genaue Werte nicht wichtig
- ▶ die wichtigsten Ionen für ferroische Materialien ↓

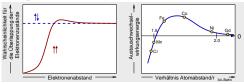

Ion	e^- -Konfiguration	Grundterm	$\mu_{\rm s}/\mu_{\rm B}$ berechn.	μ_{s}/μ_{B} exp.
V ⁴⁺	d^1	$^{2}D_{\frac{3}{2}}$	1.73	1.8
V ³⁺	d^2	${}^{3}F_{2}^{2}$	2.83	2.8
V^{2+} , Cr^{3+}	d^3	⁴ F _{3/2}	3.87	3.8
Mn^{3+} , Cr^{2+}	HS-d ⁴	$^{5}D_{0}^{^{2}}$	4.9	4.9
Mn^{2+} , Fe^{3+}	HS-d ⁵	$^{6}S_{\frac{5}{2}}$	5.92	5.9
Fe ²⁺	HS-d ⁶	$^{5}D_{4}^{^{2}}$	4.90	5.4

Paramagnetismus: T-Abhängigkeit

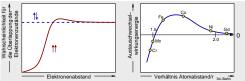

- 1. ohne Wechselwirkung zwischen den Spins
 - ightharpoonup mit fallendem T steigt χ (weniger thermisch bedingte Unordnung)
 - $\qquad \qquad \mathsf{Curie}\text{-}\mathsf{Gesetz:} \ \ \chi_{\mathit{para}} = \frac{\mathit{C}}{\mathit{T}}$
- 2. mit paralleler/antiparalleler Wechselwirkung der Spins (s.u.)
 - ► Curie-Weiß-Gesetz $\chi_{para} = \frac{C}{T-\theta}$
 - θ: paramagnetische Curie-Temperatur
 - → bei paralleler Wechselwirkung (↑↑)
 - ▶ ⊖ bei antiparalleler Wechselwirkung (↑↓)

Paramagnetismus: T-Abhängigkeit

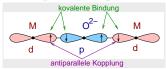
- 1. ohne Wechselwirkung zwischen den Spins
 - mit fallendem T steigt χ (weniger thermisch bedingte Unordnung)
 - $\qquad \qquad \mathsf{Curie}\text{-}\mathsf{Gesetz} \colon \ \chi_{\mathit{para}} = \frac{\mathsf{C}}{\mathsf{T}}$
- 2. mit paralleler/antiparalleler Wechselwirkung der Spins (s.u.)
 - Curie-Weiß-Gesetz $\chi_{para} = \frac{C}{T \theta}$
 - θ: paramagnetische Curie-Temperatur
 - ▶ ⊕ bei paralleler Wechselwirkung (↑↑)
 - bei antiparalleler Wechselwirkung (↑↓)
- elementare Metalle → Pauli-Paramagnetismus
 - $\triangleright \chi$ schwach positiv (nur wenige e^- bei E_F ungepaart)
 - v unabhängig von T


Paramagnetismus: T-Abhängigkeit

- 1. ohne Wechselwirkung zwischen den Spins
 - \triangleright mit fallendem T steigt χ (weniger thermisch bedingte Unordnung)
 - $\qquad \qquad \mathsf{Curie}\text{-}\mathsf{Gesetz} \colon \ \chi_{\mathit{para}} = \frac{\mathit{C}}{\mathit{T}}$
- 2. mit paralleler/antiparalleler Wechselwirkung der Spins (s.u.)
 - Curie-Weiß-Gesetz $\chi_{para} = \frac{C}{T \theta}$
 - θ: paramagnetische Curie-Temperatur
 - ▶ ⊕ bei paralleler Wechselwirkung (↑↑)
 - bei antiparalleler Wechselwirkung (↑↓)
- 3. elementare Metalle → Pauli-Paramagnetismus
 - \triangleright χ schwach positiv (nur wenige e^- bei E_F ungepaart)
 - $\triangleright \chi$ unabhängig von T

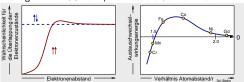

kollektiver/kooperativer Magnetismus (Festkörper-Eigenschaft)

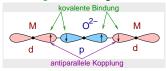
- $ightharpoonup < T_{C/N}$ (Curie/Néel-Temperatur) \mapsto Wechselwirkung der magnetischen Momente benachbarter Teilchen im Festkörper
- zwei Mechanismen
 - 1. direkte Wechselwirkung der Spins benachbarter Teilchen
 - ferromagnetisch
 - Wahrscheinlichkeit für Uberlappung von Ψ besser bei antiparallelem Spin
 - ▶ wichtig: hohe DOS bei $E_F \mapsto$ mittlere 3*d*-Elemente



kollektiver/kooperativer Magnetismus (Festkörper-Eigenschaft)

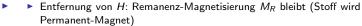
- $ightharpoonup < T_{C/N}$ (Curie/Néel-Temperatur) \mapsto Wechselwirkung der magnetischen Momente benachbarter Teilchen im Festkörper
- zwei Mechanismen
 - 1. direkte Wechselwirkung der Spins benachbarter Teilchen
 - ferromagnetisch
 - lacktriangle Wahrscheinlichkeit für Überlappung von Ψ besser bei antiparallelem Spin
 - ▶ wichtig: hohe DOS bei $E_F \mapsto$ mittlere 3*d*-Elemente

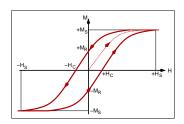

2. indirekte Wechselwirkung über diamagnetische Brücken (Superaustausch)


- meist antiferro-, gelegentlich aber auch ferro-magnetisch
- ▶ abhängig von Bindung/Winkel in Briicke

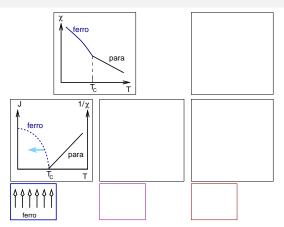
kollektiver/kooperativer Magnetismus (Festkörper-Eigenschaft)

- $ightharpoonup < T_{C/N}$ (Curie/Néel-Temperatur) \mapsto Wechselwirkung der magnetischen Momente benachbarter Teilchen im Festkörper
- zwei Mechanismen
 - 1. direkte Wechselwirkung der Spins benachbarter Teilchen
 - ferromagnetisch
 - lacktriangle Wahrscheinlichkeit für Überlappung von Ψ besser bei antiparallelem Spin
 - ▶ wichtig: hohe DOS bei $E_F \mapsto$ mittlere 3*d*-Elemente


2. indirekte Wechselwirkung über diamagnetische Brücken (Superaustausch)

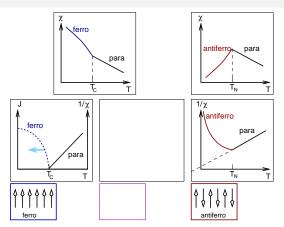

- meist antiferro-, gelegentlich aber auch ferro-magnetisch
- abhängig von Bindung/Winkel in Brücke

Ferromagnetismus (kooperativ) ↑↑↑↑


- parallele Ausrichtung benachbarter Spins
- ► Materialien:
 - Übergangsmetalle: Fe, Co, Ni
 - Seltene Erden: Tb, Dy, Gd
 - diverse Oxide, z.B. CrO₂
- ▶ Prinzip: Abhängigkeit $H \leftrightarrow M$: Hysterese
 - Anlegen äußerer Felder H (Neukurve)
 - parallele Ausrichtung der Spins innerhalb Weiß'scher Bezirke
 - ► Anwachsen von *M* mit *H* bis zur Sättigungsmagnetisierung *M*_s:
 - anfangs: Verschiebung von Bloch-Wänden
 - bei großem H: Umklappen kompletter Domänen (Korn = Domäne → hart!)

- Umpolung: Koerzitiv-Feld
- ▶ Fläche innerhalb der Kurve ∝ Energie, die zur Umkehr nötig ist

Ferromagnetismus: T-Abhängigkeit

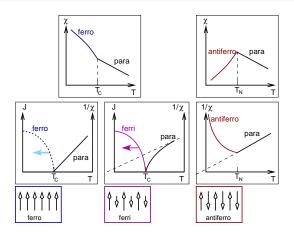


- ► T_C: ferromagnetische Curie-Temperatur
- $ightharpoonup < T_C$: χ fällt mit steigender Temperatur \mapsto Unordnung durch thermische Bewegung
- $\gt T_C$: paramagnetisch $\mapsto \chi$ fällt mit steigender Temperatur

Antiferromagnetismus (kooperativ) ↑↓↑↓

- $ightharpoonup < T_N$ (Néel-Temperatur) \mapsto antiparallele Spinausrichtung durch Superaustausch
- ▶ Materialien (T_N in K)
 - ► Mn (95)
 - ► Cr (313)
 - ► MnO (120)
 - ► CoO (292)
 - ► NiO (523)
 - α-Fe₂O₃ (953)
 - ▶ FeF₂ (80)
- ▶ keine Hysterese → keine Anwendung

Antiferromagnetismus: T-Abhängigkeit



- ► T_N: Néel-Temperatur
- $ightharpoonup < T_N$: χ steigt mit steigender der Temperatur \mapsto Unordnung führt zu resultierendem Moment d.h. stört Gleichverteilung
- $ightharpoonup > T_N$: paramagnetisch $\mapsto \chi$ fällt mit steigender Temperatur

Ferrimagnetismus (kooperativ)

- ▶ antiparallele Ausrichtung, aber mit ungleicher e⁻-Zahl oder Richtung
- Materialien
 - Ferrite (MFe₂O₄, γ-Fe₂O₃)
 - Granate
- ► Hysterese wie Ferromagnetika, daher gleiche Anwendungen
- Vorteil: meist Oxide usw., d.h. kein Wirbelstromverlust durch induzierte Ströme

Ferrimagnetismus: T-Abhängigkeit

- analog Ferromagnetismus
- ▶ i.A. negative Debye-Temperatur Θ

Andere Ordnungsmöglichkeiten der Spins (kooperativ)

- verkantet: FeF₃, FeBO₃
- spiralförmig: einige Lanthanoide

Physikalische Eigenschaften von Festkörperr

Grundlagen des Magnetismu Physikalische Grundlager Atomarer Magnetismus kollektiver Magnetismus

Messung magnetischer Eigenschaften

'Magnetische Messungen' (SQUID-Magnetometer) Mößbauerspektroskopie

Spinstrukturen mittels *n*-Beugung

Materialier

Metalle und Legierungen Oxide

Anwendunger

Zusammenfassung

Physikalische Eigenschaften von Festkörperi

Grundlagen des Magnetismus

Physikalische Grundlagen

Atomarer Magnetismus

kollektiver Magnetismus

Messung magnetischer Eigenschaften

'Magnetische Messungen' (SQUID-Magnetometer)

Mößbauerspektroskopie

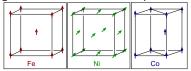
Spinstrukturen mittels n-Beugung

Materialien

Metalle und Legierungen

Oxide

Anwendunger


Zusammenfassung

Metalle und Legierungen

Metalle der 3d-Reihe

	$T_{C/N}[K]$	ferrom.	antiferrom.		
Fe	1043	×			
Ni	631	×			
Со	1404	×			
$Nd_2Fe_{12}B$	583	×			
$SmCo_5$	998	×			
Mn	95		Х		
Cr	313		×		

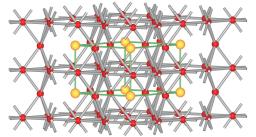
► Fe, Co, Ni → ferromagnetisch, unterschiedliche Spinstruktur

- Cr, Mn → bei niedrigen Temperaturen antiferromagnetisch
 (Cr: b.c.c. mit antiparalleler Orientierung entlang einer Achse)
- ▶ übrige 3*d*-Metalle → Pauli-Paramagnete (kein kollektiver Magnetismus)

Metalle und Legierungen

Metalle der 3d-Reihe (Forts.)

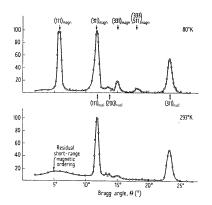
- Begründung:
 - ▶ mittlere Elemente der d-Reihe \mapsto viele ungepaarte e^-
 - ightharpoonup Cr, Mn: kleine Abstände \mapsto direkte *d-d*-Wechselwirkungen (antiparallel)
 - ► Fe, Co, Ni: größere Abstände → parallele WW
 - Zahl ungepaarter Elektronen:
 - Fe: d^6s^2 , real: $d^{7.4}s^{0.6} \mapsto 2.2$ ungepaarte e^-
 - ► Cu: keine ungepaarten d-e⁻

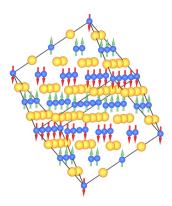

Metalle und Legierungen

Seltene Erden

- viele ungepaarte Spins
- z.T. T-abhängig Wechsel des Magnetismus

Legierungen

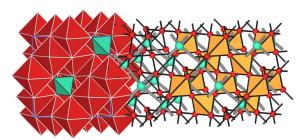

- besonders starke Dauermagnete:
- ▶ SmCo₅ (CaCu₅-Typ)

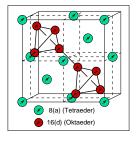


- SE₂Co₁₇ (Th₂Zn₁₇-Typ)
- ▶ Nd₂Fe₁₂B

Übergangsmetalloxide M''O

- ▶ antiferromagnetisch aufgrund von Superaustausch, keine Anwendung (!)
- magnetische Spinstruktur aus Neutronenbeugung (Zellvergrößerung)
- ► Spinstruktur = magnetische Überstruktur

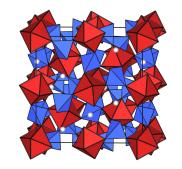




Spinstruktur von MnO

Spinelle

- ▶ meist ferri-magnetisch
- ▶ aber: abhängig vom Inversionsgrad → anti- oder ferri-magnetisch
- ightharpoonup z.B. Ferrite: $M^{2+}Fe_2O_4$ (M = Mg, Ni, Mn)
 - ► Struktur: A^t[B₂]^oO₄
 - t- und o- Plätze koppeln antiparallel (Superaustausch)
 - ▶ z.B. MgFe₂O₄
 - ▶ komplette Inversion: $1 \times Fe^{3+}$ (d^5) auf t, $1 \times$ auf o-Platz \mapsto antiferro, keine Hysterese
 - ▶ unvollständige Inversion: → ferri-magnetisch, d.h. Hysterese



Granate

- ► allgemeine Formel: A₃B₂C₃O₁₂
- ► Struktur:
 - ► AIO₆-Oktaeder; SiO₄-Tetraeder
 - ▶ fast linear über O-Liganden verknüpft → guter Superaustausch
- ▶ alle ferrimagnetisch → Hysterese
- kein Problem mit Inversion, da Untergitter mit unterschiedlicher Ionenzahl
- Einbau von Seltenerd-Ionen mit hohem Paramagnetismus möglich, z.B. YIG: Y₃Fe₃³⁺O₁₂
- ▶ große magnetische Effekte, aber keine elektrischen Leiter → keine Wirbelstromverluste

	A ₃	B_2	C_3	Magnetismus
Grossular	Ca ₃	Al_2	Si_3	-
Uvarovit	Ca ₃	Cr_2	Si_3	-
Pyrop	Mg_3	AI_2	Si_3	-
Andradit	Ca ₃	Fe ₂	Si ₃	-
YIG	Y ₃	Fe ₂	Fe ₃	ferrimagnetisch

Physikalische Eigenschaften von Festkörperi

Grundlagen des Magnetismus

Physikalische Grundlagen

Atomarer Magnetismus

kollektiver Magnetismus

Messung magnetischer Eigenschaften

'Magnetische Messungen' (SQUID-Magnetometer)

Mößbauerspektroskopie

Spinstrukturen mittels *n*-Beugung

Materialien

Metalle und Legierungen

Oxide

Anwendungen

Zusammenfassung

 $\label{eq:Ferro-Ferri-Magnetismus} \ \mapsto \ Hysterese \ !$ $\ drei \ Anwendungsbereiche:$

- 1. Dauermagnete (Hartmagnete)
 - große Remanenz, sehr große Koerzitivfeldstärke Ho
 - ▶ typische Materialen: SmCo₅, Nd₂Fe₁₂B

 $\label{eq:Ferro-Ferri-Magnetismus} \begin{picture}{l}{l}{Ferro-Ferri-Magnetismus} \begin{picture}{l}{l}{Hysterese} \end{picture} ! \\ drei Anwendungsbereiche: \\ \end{picture}$

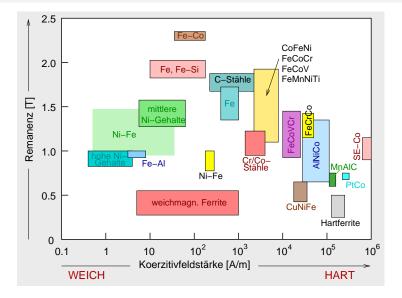
- 1. Dauermagnete (Hartmagnete)
 - ▶ große Remanenz, sehr große Koerzitivfeldstärke *H*_c
 - ▶ typische Materialen: SmCo₅, Nd₂Fe₁₂B
- 2. Weichmagnete für E-Technik (Transformatoren, Spulenanker in Motoren)
 - ightharpoonup geringe Fläche (Energie!, $M \cdot H$), kleine Koerzitivfeldstärke H_c
 - geringe elektronische Leitfähigkeit
 - Materialien
 - ► Fe mit isolierenden Zwischenschichten
 - 45 Permalloy (Fe/Ni: 55/45)

 $\label{eq:Ferri-Magnetismus} \begin{picture}{l} Ferro-/Ferri-Magnetismus \mapsto Hysterese \ ! \\ drei \ Anwendungsbereiche: \end{picture}$

- 1. Dauermagnete (Hartmagnete)
 - ightharpoonup große Remanenz, sehr große Koerzitivfeldstärke H_c
 - ▶ typische Materialen: SmCo₅, Nd₂Fe₁₂B
- 2. Weichmagnete für E-Technik (Transformatoren, Spulenanker in Motoren)
 - ▶ geringe Fläche (Energie!, $M \cdot H$), kleine Koerzitivfeldstärke H_c
 - geringe elektronische Leitfähigkeit
 - ► Materialien:
 - Fe mit isolierenden Zwischenschichten
 - 45 Permalloy (Fe/Ni: 55/45)
- Datenspeicherung
 - rechteckige Hysterese-Kurve (1-0)
 - hohe Remanen:
 - Materialien: für Tapes und Disketten
 - $-\gamma$ -Fe₂O₃ (Spinell-Struktur)
 - CrO2 (Rutil-Struktur)
 - ► Materialien: für Festplatten
 - div. Metall-Legierungen auf Al-Substrat (z.B. CoPtCrB-Legierungen)

 $\label{eq:Ferri-Magnetismus} \begin{picture}{l} Ferro-/Ferri-Magnetismus \mapsto Hysterese \ ! \\ drei \ Anwendungsbereiche: \end{picture}$

- 1. Dauermagnete (Hartmagnete)
 - ▶ große Remanenz, sehr große Koerzitivfeldstärke H_c
 - typische Materialen: SmCo₅, Nd₂Fe₁₂B
- 2. Weichmagnete für E-Technik (Transformatoren, Spulenanker in Motoren)
 - ▶ geringe Fläche (Energie!, $M \cdot H$), kleine Koerzitivfeldstärke H_c
 - geringe elektronische Leitfähigkeit
 - Materialien:
 - ► Fe mit isolierenden Zwischenschichten
 - 45 Permalloy (Fe/Ni: 55/45)
- 3. Datenspeicherung
 - rechteckige Hysterese-Kurve (1-0)
 - hohe Remanenz
 - Materialien: für Tapes und Disketten
 - $-\gamma$ -Fe₂O₃ (Spinell-Struktur)
 - CrO₂ (Rutil-Struktur)
 - ► Materialien: für Festplatten
 - div. Metall-Legierungen auf Al-Substrat (z.B. CoPtCrB-Legierungen) ↓


Moderne Datenspeicher

- ▶ Platte
 - alte Festplatten: Legierungen Fe-Pt usw.
 - neuere Platten: CoPtCrB-Legierung, z.B. mit Ru-Zwischenschicht zwischen 2 antiparallelen Schichten
- ► Lesekopf: GMR-Materialien (Giant Magneto-Resistance)
 - ► Prinzip: 'Nano'-Schichten Fe-Cr-Fe
 - Widerstand hängt von Magnetisierung der Fe-Schichten ab

Moderne Datenspeicher

- Platte
 - ▶ alte Festplatten: Legierungen Fe-Pt usw.
 - neuere Platten: CoPtCrB-Legierung, z.B. mit Ru-Zwischenschicht zwischen 2 antiparallelen Schichten
- ► Lesekopf: GMR-Materialien (Giant Magneto-Resistance)
 - ► Prinzip: 'Nano'-Schichten Fe-Cr-Fe
 - ▶ Widerstand hängt von Magnetisierung der Fe-Schichten ab

Magnetmaterialien: Übersicht

Magnetmaterialien: physikalische Größen

Anwendung	Material	μ_r	B_s	H_c	M_R	$(B \cdot H)_{max}$
		-	[T]	[A/m]	[T]	[TA/m]
Dauer-	SmCo ₅			760 000	0.95	200 000
magnete	$Nd_2Fe_{12}B$			880 000	1.2	360 000
	BaFe ₁₂ O ₁₉			190 000	0.4	20 000
Weich-	Fe	5 000	2.14	72		
magnete	45-Permalloy (Fe/Ni)	25 000	1.6	20		klein
(Motoren)	B2 Ferroxcube (Ni,Zn)Fe ₂ O ₄		0.3			
Daten-	γ -Fe ₂ O ₃			30 000		
spei-	γ -Fe ₂ O ₃ Co-dot.			60 000		
cherung	CrO ₂			110 000		
	Fe-Pigmente			75 000-130 000		
	Fe/Co (70/30)			90 000-160 000		
	Co/Pt/Cr/B					

Physikalische Eigenschaften von Festkörperr

Grundlagen des Magnetismus

Physikalische Grundlagen

Atomarer Magnetismus

kollektiver Magnetismus

Messung magnetischer Eigenschaften

'Magnetische Messungen' (SQUID-Magnetometer)

Mößbauerspektroskopie

Spinstrukturen mittels n-Beugung

Materialien

Metalle und Legierungen

Oxide

Anwendunger

Zusammenfassung

Zusammenfassung

- ▶ Magnetisierung *M* als statischer 'Response' auf magnetische Felder *H*
- ▶ Hysterese = Nichtlinearität von H und M
- ▶ direkte indirekte (Superaustausch) Spin-Wechselwirkungen
- kollektiver Magnetismus (Voraussetzung: paramagnetische Atome/Ionen)
 - ferro
 - antiferro
 - ferri
 - **>**
- Materialien
 - Metalle und Legierungen (Fe, SmCo₅, Nd-Fe-B)
 - ▶ Übergangsmetall-Oxide (Ferrite, Granate)
- Anwendungen
 - 1. Permanentmagnete (hart)
 - 2. Weichmagnete der E-Technik (weich)
 - 3. Datenspeicherung

- A. West: Solid State Chemistry and its Application, Wiley.
- D. R. Askeland: Materialwissenschaften, Spektrum.
- Lehrbücher der Physik
- Lehrbücher der Festkörperphysik, z.B.
 - ► Ch. Kittel: Einführung in die Festkörperphysik, Oldenbourg.

DANKE!