Bandstrukturen I: Vom Molekül zum Festkörper (LCAO-Ansatz)

Quantenchemische Rechenmethoden: Grundlagen und Anwendungen

http://ruby.chemie.uni-freiburg.de/Vorlesung/Seminare/m+k_bs_I.pdf
Caroline Röhr

Universität Freiburg, Institut für Anorganische und Analytische Chemie

SS 2025

BS I: Vom Molekül zum Festkörper

Caroline Röhr

0-dimensionaler Fall: Atome + Moleküle (Wdh.)

Atomorbitale

Molekülorbitale (LCAO und daraus folgende

1-dimensionaler Fall: Unendliche Ketten

Realraumdarstellung

'Lösungs'-Ansätze)

k-Raum-Darstellung, Bandstruktur

PEERLS-Verzerrung, Falten von Bändern

2-dimensionaler Fall: Ebene Netze

Grundsätzliches

Quadratische Netze (Squarium)

Graphit (Graphen) (s.a. IV)

3-dimensionaler Fall

Grundsätzliches

Kubisch primitives Gitter (Cubium)

Beispiele: α -Po, P, As, Se (s.a. IV)

0-dimensionaler Fall: Atome + Moleküle (Wdh.) Atomorbitale	BS I: Vom Molekül zum Festkörper Caroline Röhr
Molekülorbitale (LCAO und daraus folgende 'Lösungs'-Ansätze)	0-dimensionaler Fall: Atome + Moleküle (Wdh.)
1-dimensionaler Fall: Unendliche Ketten	Atomorbitale
Realraumdarstellung	Molekülorbitale (LCAO und daraus folgende
k-Raum-Darstellung, Bandstruktur	'Lösungs'-Ansätze)
Peierls-Verzerrung, Falten von Bändern	1-dimensionaler Fall: Unendliche Ketten
2-dimensionaler Fall: Ebene Netze	Realraumdarstellung
Grundsätzliches	k-Raum-Darstellung, Bandstruktur
Quadratische Netze (Squarium)	PEIERLS-Verzerrung, Falten von Bändern
Graphit (Graphen) (s.a. IV)	2-dimensionaler Fall: Ebene Netze
3-dimensionaler Fall	Grundsätzliches
Grundsätzliches	Quadratische Netze (Squarium)
	Graphit (Graphen) (s.a. IV)
Kubisch primitives Gitter (Cubium)	3-dimensionaler Fall
Beispiele: α -Po, P, As, Se (s.a. IV)	Grundsätzliches
7. Land mark on for source	Kubisch primitives Gitter (Cubium)
Zusammenfassung	Beispiele: α -Po, P, As, Se (s.a. IV)
	Zusammenfassung

Atome + Moleküle (Wdh.)

Graphit (Graphen) (s.a. IV)

3-dimensionaler Fall

Grundsätzliches Kubisch primitives Gitter

(Cubium)

Beispiele: α -Po, P, As, Se (s.a. IV)

Zusammenfassung

▶ R. Hoffmann: Begegnung von Chemie und Physik im Festkörper Angewandte Chemie 99, 871 (1987).

R. Hoffmann: Solids and Surfaces: A Chemist's View of Bonding in Extended Structures, VCH.

BS I: Vom Molekül zum Festkörper 0-dimensionaler Fall: Atome + Moleküle (Wdh.) Caroline Böhr Atomorbitale Molekülorbitale (LCAO und daraus folgende 'Lösungs'-Ansätze) Atomorbitale Molekülorbitale (LCAO und daraus folgende 'Lösungs'-Ansätze) 1-dimensionaler Fall: Unendliche Ketten Realraumdarstellung k-Raum-Darstellung. Bandetruktur Peierls-Verzerrung, Falten von Bändern 2-dimensionaler Fall: Ebene Netze Grundsätzliches Quadratische Netze (Squarium) Graphit (Graphen) (s.a. IV) 3-dimensionaler Fall Grundsätzliches Kubisch primitives Gitter (Cubium)

Beispiele: \alpha-Po, P, As, Se

(s.a. IV)
Zusammenfassung

zum Festkörper 0-dimensionaler Fall: Atome + Moleküle (Wdh.) Caroline Böhr Atomorbitale 0-dimensionaler Fall: Atome + Moleküle (Wdh.) Atomorbitale Molekülorbitale (LCAO und daraus folgende 'Lösungs'-Ansätze) 1-dimensionaler Fall: Unendliche Ketten Realraumdarstellung k-Raum-Darstellung. Bandetruktur Peierls-Verzerrung, Falten von Bändern 2-dimensionaler Fall: Ebene Netze Grundsätzliches Quadratische Netze (Squarium) Graphit (Graphen) (s.a. IV) 3-dimensionaler Fall

BS I: Vom Molekül

(Cubium)

Grundsätzliches Kubisch primitives Gitter

Beispiele: \alpha-Po, P, As, Se (s.a. IV)

H-Atom

BS I: Vom Molekül zum Festkörper

Caroline Röhr

- ► BORN-OPPENHEIMER-Näherung
- ▶ ein (!) Elektron im (zeitunabhängigen) Potential eines H-Atomkerns
- ► Eigenwertproblems der Energie (Schrödinger-Gleichung):

$$\hat{H}\psi = E\psi$$

▶ zwei Anteile: kinetische und potentielle Energie des Elektrons

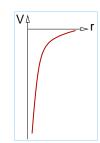
$$\hat{H} = \underbrace{-\frac{\hbar}{2m_e} \nabla^2}_{\hat{T}(E_{\rm kin})} + \underbrace{\hat{V}}_{\hat{V}(E_{\rm pot})}$$

- ▶ mit $E_{\text{kin}} = \frac{1}{2} m_e v^2$ und $p = m_e v \mapsto E_{\text{kin}} = \frac{p^2}{2m_e}$ (klassisch)
- ightharpoonup bzw. mit $\hat{p} = -i\hbar \frac{\delta}{\delta x} \mapsto$

$$\hat{T} = -\frac{\hbar}{2m_e} \nabla^2 \xrightarrow{\text{atomare}} = -\frac{1}{2} \nabla^2$$

▶ $E_{\text{pot}} = V_{\text{Coulomb}}$ für e^- im Coulomb-Potential eines Atomkerns der Kernladungszahl Z_N

$$V(r) = -\frac{Z_N e^2}{4\pi\epsilon_0 r} \xrightarrow{\text{atomare}} -\frac{1}{r}$$



Atomorbitale

'Lösungs'-Ansätze)

(Wdh.)

0-dimensionaler Fall: Atome + Moleküle

Molekülorbitale (LCAO und daraus folgende

1-dimensionaler Fall:

Unendliche Ketten Realraumdarstellung k-Raum-Darstellung.

Bandstruktur
PEIERLS-Verzerrung, Falten

von Bändern

2-dimensionaler Fall: Ebene Netze

Grundsätzliches

Quadratische Netze (Squarium) Graphit (Graphen) (s.a. IV)

3-dimensionaler Fall

Grundsätzliches

Kubisch primitives Gitter (Cubium)

Beispiele: α-Po, P, As, Se

(s.a. IV)
Zusammenfassung

 $[\]hbar = m_e = \frac{e^2}{4\pi\epsilon_0} = 1 \mapsto \text{Länge in Bohr (1 Bohr} = 52.9 \text{ pm)}; \ E \text{ in Hartee } (\frac{1}{2} \text{ Ha} = 1 \text{ Ryd} = 13.6 \text{ eV})$

Atomorbitale: Lösungen für das H-Atom

BS I: Vom Molekül zum Festkörper Caroline Röhr

0-dimensionaler Fall:

(Wdh.)

Atomorbitale

Atome + Moleküle

Molekülorbitale (LCAO und

daraus folgende

'Lösungs'-Ansätze)

1-dimensionaler Fall:

Unendliche Ketten

Realraumdarstellung

k-Raum-Darstellung.

Bandstruktur Peierls-Verzerrung, Falten

von Bändern

2-dimensionaler Fall:

Ebene Netze

Grundsätzliches

Quadratische Netze

(Squarium)

Graphit (Graphen) (s.a. IV)

3-dimensionaler Fall

Grundsätzliches Kubisch primitives Gitter

Beispiele: \alpha-Po, P, As, Se (s.a. IV)

(Cubium)

Zusammenfassung

Eigenenergien E_n $E_n \sim \frac{-Z^2}{2\pi^2}$

- \triangleright d.h. die Eigenenergien hängen nur von der Hauptquantenzahl n ab (s- und p-Zustände entartet)
- ightharpoonup Eigenfunktionen ψ_{n,l,m_l}
 - \blacktriangleright $\psi_{n,l,m}$, kompliziert und abhängig von den Quantenzahlen n,l und m_l
 - physikalische Bedeutung: $\psi^2 \propto$ Aufenthaltswahrscheinlichkeitsdichte des e^-
 - ▶ ↓

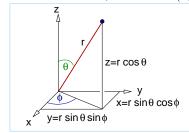
H-Atomorbitale: Eigenfunktionen

BS I: Vom Molekül zum Festkörper

O-dimensionaler Fall:

Caroline Röhr

Transformation von ψ : kartesisch $(x, y, z) \Longrightarrow \text{Polarkoordinaten } (r, \theta, \phi)$



- $\mathbf{x} = |\vec{r}| \sin \theta \cos \phi$
- $y = |\vec{r}| \sin \theta \sin \phi$
- $ightharpoonup z = |\vec{r}| \cos \theta$

Bernoulli-Produktansatz: Separation in Radius- und winkelabhängige Anteile

$$\psi_{n,l,m_l}(\vec{r}) = NR_{n,l}(|\vec{r}|)Y_{l,m_l}(\theta,\phi)$$

- ▶ mit
 - **1** $Y_{l.m_l}(\theta, \phi) = Y_{l.m_l}(\hat{r})$ (Kugelflächenfunktionen)
 - **2** $R_{n,l}(|\vec{r}|)$ (Lösungen der radialen Schrödinger-Gleichung)

Atome + Moleküle Atomorbitale

(Wdh.)

Molekülorbitale (LCAO und daraus folgende 'Lösungs'-Ansätze)

1-dimensionaler Fall: Unendliche Ketten

Realraumdarstellung k-Raum-Darstellung.

Bandetruktur Peierls-Verzerrung, Falten von Bändern

2-dimensionaler Fall: Ebene Netze

Grundsätzliches

Quadratische Netze (Squarium)

Graphit (Graphen) (s.a. IV)

3-dimensionaler Fall

Grundsätzliches

Kubisch primitives Gitter

(Cubium) Beispiele: \alpha-Po, P, As, Se (s.a. IV)

H-Atomorbitale: Eigenenergien und -funktionen

normierter

Eigen-

Quanten-

Orbi-

BS I: Vo	m Molekül
zum F	estkörper

Caroline Röhr

0-dimensionaler Fall: Atome + Moleküle

Atomorbitale

daraus folgende 'Lösungs'-Ansätze)

(Wdh.)

Molekülorbitale (LCAO und

1-dimensionaler Fall: Unendliche Ketten

Realraumdarstellung

k-Raum-Darstellung, Bandstruktur Peierls-Verzerrung, Falten

von Bändern 2-dimensionaler Fall:

Ebene Netze

Grundsätzliches

Quadratische Netze

(s.a. IV)

(Squarium) Graphit (Graphen) (s.a. IV)

3-dimensionaler Fall

Grundsätzliches

Kubisch primitives Gitter

(Cubium) Beispiele: α -Po, P, As, Se

Zusammenfassung

zahlen		en	tal wert		Radialanteil	sphärische Koord.	kartes. Koord.
n	l	m_l		E_n	$R_{n,l}(\vec{r})$	$Y_{l,m_l}(\theta,\phi)$	$Y_{l,m_l}(\frac{x}{r},\frac{y}{r},\frac{z}{r})$
1	0	0	1s	E_1	$\frac{2}{\sqrt{a_0^3}}e^{-\frac{r}{a_0}}$	$\frac{1}{2\sqrt{\pi}}$	$\frac{1}{2\sqrt{\pi}}$
2	0	0	2s		$\frac{1}{2\sqrt{2a_0^3}}(2-\frac{r}{a_0})e^{-\frac{r}{2a_0}}$	$\frac{1}{2\sqrt{\pi}}$	$\frac{1}{2\sqrt{\pi}}$
2	1	0	$2p_z$	$E_2 = \frac{E_1}{4}$	$\frac{1}{2\sqrt{6a_0^3}} \frac{r}{a_0} e^{-\frac{r}{2a_0}}$	$\frac{\sqrt{3}}{2\sqrt{\pi}}\cos\theta$	$\frac{\sqrt{3}}{2\sqrt{\pi}} \frac{z}{r}$
2	1	1	$2p_x$	$E_2 = \frac{E_1}{4}$	$\frac{1}{2\sqrt{6a_0^3}} \frac{r}{a_0} e^{-\frac{r}{2a_0}}$	$\frac{\sqrt{3}}{2\sqrt{\pi}}\sin\theta\cos\phi$	$\frac{\sqrt{3}}{2\sqrt{\pi}} \frac{x}{r}$
2	1	-1	$2p_y$	$E_2 = \frac{E_1}{4}$	$\frac{\frac{1}{2\sqrt{6a_0^3}} \frac{r}{a_0} e^{-\frac{r}{2a_0}}}{\frac{r}{a_0}}$	$\frac{\sqrt{3}}{2\sqrt{\pi}}\sin\theta\sin\phi$	$\frac{\sqrt{3}}{2\sqrt{\pi}} \frac{y}{r}$
3	0	0	3s	$E_3 = \frac{E_1}{9}$		$\frac{1}{2\sqrt{\pi}}$	$\frac{1}{2\sqrt{\pi}}$
3	1	0	$3p_z$	$E_3 = \frac{E_1}{9}$			\dots s. bei $2p$
3	2	-1	$3d_{xy}$	$E_3 = \frac{E_1}{9}$		$\sqrt{\frac{15}{4\pi}}\sin^2\theta\sin\phi\cos\phi$	$\sqrt{\frac{15}{4\pi}} \frac{xy}{r^2}$
3	2	1	$3d_{xz}$	$E_3 = \frac{E_1}{9}$		$\sqrt{\frac{15}{4\pi}}\sin\theta\cos\theta\cos\phi$	$\sqrt{\frac{15}{4\pi}} \frac{xz}{r^2}$
3	2	0	$3d_{yz}$	$E_3 = \frac{E_1}{9}$		$\sqrt{\frac{15}{4\pi}}\sin\theta\cos\theta\sin\phi$	$\sqrt{\frac{15}{4\pi}} \frac{yz}{r^2}$
3	2	2	$3d_{z^2}$	$E_3 = \frac{E_1}{9}$		$\sqrt{\frac{15}{4\pi}}3\cos^2\theta - 1$	$\sqrt{\frac{15}{4\pi}} \frac{3z^2 - r^2}{r^2}$
3	2	-2	$3d_{x^2-y^2}$	$E_3 = \frac{E_1}{9}$		$\sqrt{\frac{15}{4\pi}}\sin^2\theta\cos2\phi$	$\sqrt{\frac{15}{4\pi}} \frac{x^2 - y^2}{r^2}$
							<u> </u>

normierte Winkelfunktion

Winkelabhängiger Teil $Y_{l,m_l}(\theta,\phi)$: Kugelflächenfunktionen

Caroline Röhr

BS I: Vom Molekül

zum Festkörper

- ▶ Lösungen des Laplace-Operators in Kugelkoordinaten
- ► → Kugelflächenfunktionen ('spherical harmonics')
- Y unabhängig von n, nur $f(l, m_l)$ (keine freien Parameter)
- transformieren wie eine IR.
- graphische 'Darstellungen'
 - \blacktriangleright Werte von $|Y(\theta,\phi)|$, farbig auf Kugeloberfläche
 - ightharpoonup oder als Punkte im Abstand $|Y(\theta,\phi)|$ mit Phase als Farbcode
 - ightharpoonup 'cubic harmonics': $\pm m$ -LC, angepasst an kartesisches KS: https://www.cond-mat.de/teaching/QM/JSim/spherharm.html (WebGl)
- bekannte 'Orbitalformen':
 - s (l = 0): Y = const.
 - kugelsymmetrisch (keine Winkelabhängigkeit)
 - ▶ Parität: q (inversionssymmetrisch)
 - p(l=1): $Y=f(\frac{x}{n})$ oder $f(\frac{y}{n})$ oder $f(\frac{z}{n})$
 - rotationssymmetrisch bzgl. kartesischer Koordinaten
 - rthogonal zueinander; Parität: u (bei $i = \bar{1} \mapsto Umkehr des Vorzeichens von <math>Y$)
 - d(l=2): $Y=f(\frac{xy}{r^2})$ usw. (Form: $\mapsto d_{xy}$ usw.)
 - Parität: q

Atome + Moleküle Atomorbitale

(Wdh.)

Molekülorbitale (LCAO und

O-dimensionaler Fall:

daraus folgende 'Lösungs'-Ansätze) 1-dimensionaler Fall:

Unendliche Ketten Realraumdarstellung

k-Raum-Darstellung. Randstruktur

Peierls-Verzerrung, Falten von Bändern

2-dimensionaler Fall: Ebene Netze

Grundsätzliches

Quadratische Netze (Squarium)

Graphit (Graphen) (s.a. IV)

3-dimensionaler Fall

Grundsätzliches

Kubisch primitives Gitter

(Cubium)

Beispiele: \alpha-Po, P, As, Se

(s.a. IV)

Radialfunktion $R_{n,l}(r)$

▶ $R_{n,l}(|\vec{r}|)$: Lösungen der radialen (1D, nur r-abhängigen) SCHRÖDINGER-Gl.:

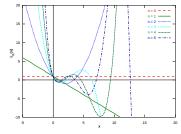
$$\left[-\frac{d^2}{dr^2} + V(r) - E \right] R_{n,l}(r) = 0 \text{ mit } V(r) = -\frac{1}{r}$$

- ightharpoonup z. B. für H-Atom ($a_0=52.9~\mathrm{pm}=1~\mathrm{Bohr},~\mathrm{s.}$ Tab.)
 - ► 1s-Orbital: $R_{1,0}(|\vec{r}|) = \frac{2}{\sqrt{a_0^3}} e^{-\frac{r}{a_0}}$
 - ► 2s-Orbital: $R_{2,0}(|\vec{r}|) = \frac{1}{2\sqrt{2a_0^3}}(2 \frac{r}{a_0})e^{-\frac{r}{2a_0}}$
 - ▶ $2p_y$ -Orbital: $R_{2,1}(|\vec{r}|) = \frac{1}{2\sqrt{6a_0^3}} \frac{r}{a_0} e^{-\frac{r}{2a_0}}$
- ▶ allgemein (s. H-Atomlösung bei ThK)

$$R_{n,l}(r) \propto S_{nl} r^l e^{-\frac{r}{n}}$$

► exakt ziemlich fies (LAGUERRE-Polynome £)

$$R_{n,l}(r) = D_{nl}(2\kappa r)^l e^{-\kappa r} \mathfrak{L}_{n-l-1}^{2l+1}(2\kappa r)$$
 (κ = charakteristische Länge; D_{nl} : Normierungsfaktor)



die ersten 6 Laguerre-Polynome

Edmond Laguerre (1843-1886)

BS I: Vom Molekül zum Festkörper

Caroline Röhr

0-dimensionaler Fall: Atome + Moleküle (Wdh.)

Atomorbitale

Molekülorbitale (LCAO und daraus folgende 'Lösungs'-Ansätze)

1-dimensionaler Fall: Unendliche Ketten

Realraumdarstellung

k-Raum-Darstellung, Bandstruktur

PEIERLS-Verzerrung, Falten von Bändern

2-dimensionaler Fall: Ebene Netze

Grundsätzliches

Quadratische Netze (Squarium)

Graphit (Graphen) (s.a. IV)

3-dimensionaler Fall

Grundsätzliches

Kubisch primitives Gitter (Cubium)

Beispiele: α -Po, P, As, Se (s.a. IV)

Caroline Röhr

0-dimensionaler Fall: Atome + Moleküle (Wdh.)

Molekülorbitale (LCAO und daraus folgende 'Lösungs'-Ansätze)

1-dimensionaler Fall: Unendliche Ketten

Realraumdarstellung

k-Raum-Darstellung, Bandstruktur

PEIERLS-Verzerrung, Falten von Bändern

2-dimensionaler Fall: Ebene Netze

Grundsätzliches

Ouadratische Netze

Quadratische Netze (Squarium)

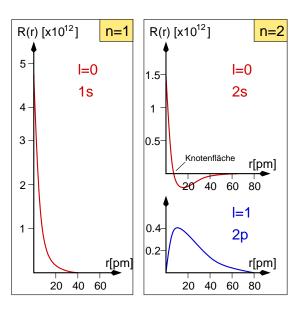
Graphit (Graphen) (s.a. IV)

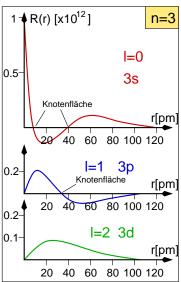
3-dimensionaler Fall

Grundsätzliches

Kubisch primitives Gitter (Cubium)

Beispiele: α -Po, P, As, Se (s.a. IV)





Caroline Röhr

Molekülorbitale (LCAO und daraus folgende 'Lösungs'-Ansätze)

1-dimensionaler Fall: Unendliche Ketten

Realraumdarstellung

k-Raum-Darstellung, Bandstruktur

PEIERLS-Verzerrung, Falten von Bändern

2-dimensionaler Fall: Ebene Netze

Grundsätzliches

Ouadratische Netze

(Squarium)

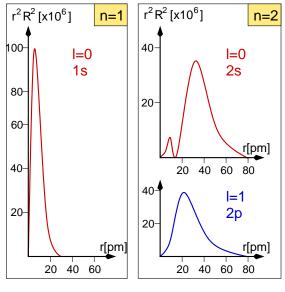
Graphit (Graphen) (s.a. IV)

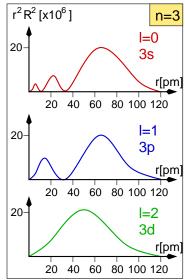
3-dimensionaler Fall

Grundsätzliches

Kubisch primitives Gitter (Cubium)

Beispiele: α -Po, P, As, Se (s.a. IV)





komplette Einelektronen-Wellenfunktionen \mapsto Basissätze

BS I: Vom Molekül zum Festkörper Caroline Röhr

insgesamt (exakt!):

$$\psi_{n,l,m_l}(\vec{r}) = NR_{n,l}(|\vec{r}|)Y_{l,m_l}(\theta,\phi)$$

- ▶ als Bildchen:
 - ▶ http://www.falstad.com/qmatom/ bzw. lokale Kopie
 - ▶ lokale Seite mit einigen 'Orbitalen'
- ► Näherungen/Ansätze für Moleküle (Basissätze)
 - ▶ mit STOs:

$$\psi_{n,l,m_l}^{\text{STO}}(\vec{r}) = A_{n,l} r^l e^{-\alpha \frac{r}{n}} Y_{l,m_l}(\theta, \phi)$$

▶ mit GTOs:

$$\psi_{i,j,k}^{\text{GTO}}(\vec{r}) = A_{i,j,k} r^l e^{-\alpha r^2} x^i y^j z^k \text{ mit } l = i + j + k$$

- \triangleright Parameter A und α jeweils im Basissatz enthalten
- ► Näherungen/Ansätze für Festkörper (s. III)
 - ▶ atomare Basis für APW:

$$\psi_{l,m_l}^{\text{APW}}(\vec{r'}) = A_{l,m_l} u_l(\vec{r'}) Y_{l,m_l}(\theta,\phi)$$

- $ightharpoonup u_l(\vec{r'})$: Lösungen der radialen SG für freies Atom
- ▶ Parameter A_{l,m_l} : aus 'Augmentierung'

Atome + Moleküle Atomorbitale

(Wdh.)

Molekülorbitale (LCAO und daraus folgende

O-dimensionaler Fall:

'Lösungs'-Ansätze) 1-dimensionaler Fall: Unendliche Ketten

Realraumdarstellung

k-Raum-Darstellung. Randstruktur Peierls-Verzerrung, Falten

von Bändern 2-dimensionaler Fall:

Ebene Netze

Grundsätzliches Quadratische Netze

(Squarium) Graphit (Graphen) (s.a. IV)

3-dimensionaler Fall

Grundsätzliches

Kubisch primitives Gitter

(Cubium)

Beispiele: \alpha-Po, P, As, Se (s.a. IV)

Nicht-H-Atome

Caroline Röhr

BS I: Vom Molekül

zum Festkörper

Atome + Moleküle Atomorbitale

(Wdh.)

0-dimensionaler Fall:

Molekülorbitale (LCAO und

daraus folgende

- keine geschlossenen Lösungen
- wegen e^- - e^- -Wechselwirkung (Hartree + Austausch + Korrelation usw.)
- Tool zum Selberrechnen für alle Atomsorten im PSE:

https://www.cond-mat.de/sims/multiplet/

'Lösungs'-Ansätze)

1-dimensionaler Fall: Unendliche Ketten

Realraumdarstellung

k-Raum-Darstellung. Bandstruktur

Peierls-Verzerrung, Falten

von Bändern 2-dimensionaler Fall:

Ebene Netze

Grundsätzliches

Quadratische Netze (Squarium)

Graphit (Graphen) (s.a. IV)

3-dimensionaler Fall

Grundsätzliches Kubisch primitives Gitter (Cubium)

Beispiele: α -Po, P, As, Se (s.a. IV)

0-dimensionaler Fall: Atome + Moleküle (Wdh.) Molekülorbitale (LCAO und daraus folgende 'Lösungs'-Ansätze)

1-dimensionaler Fall: Unendliche Ketten Realraumdarstellung k-Raum-Darstellung. Randstruktur Peierls-Verzerrung, Falten von Bändern

2-dimensionaler Fall: Ebene Netze Grundsätzliches

Quadratische Netze (Squarium)

BS I: Vom Molekül zum Festkörper

Caroline Böhr

Molekülorbitale (LCAO und daraus folgende 'Lösungs'-Ansätze)

0-dimensionaler Fall: Atome + Moleküle (Wdh.) Atomorbitale

Graphit (Graphen) (s.a. IV) 3-dimensionaler Fall Grundsätzliches

Kubisch primitives Gitter (Cubium)

(s.a. IV)

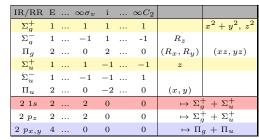
Beispiele: \alpha-Po, P, As, Se

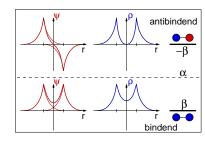
Modell H₂⁺: 'Lösung' durch LCAO mit Symmetriebetrachtung (Wdh.)

- ein e⁻ im Potential zweier Protonen
- noch geschlossen lösbar, aber Eigenfunktionen ψ kompliziert
- mit LCAO-Ansatz ($\psi = c_1\phi_1 + c_2\phi_2$) gilt für die Elektronendichte:

$$\rho \sim \psi^2 = c_1^2 \phi_1^2 + c_2^2 \phi_2^2 + 2c_1 c_2 \phi_1 \phi_2$$

- aus Symmetriegründen muß ρ beim Vertauschen $\phi_1 \leftrightarrow \phi_2$ gleich bleiben
- \mapsto 2 Lösungen: $c_1 = \pm c_2$
- SALCs/Ligandengruppenorbitalen
 - \blacktriangleright bindend: $\psi_b \sim \phi_1 + \phi_2$ (für $c_1 = c_2$) (IR Σ_a^+)
 - \blacktriangleright antibindend: $\psi_a \sim \phi_1 \phi_2$ (für $c_1 = -c_2$) (IR Σ_u^+)





Caroline Röhr

BS I: Vom Molekül

zum Festkörper

O-dimensionaler Fall:

Atome + Moleküle (Wdh.)

Atomorbitale

Molekülorbitale (LCAO und daraus folgende

'Lösungs'-Ansätze) 1-dimensionaler Fall:

Unendliche Ketten Realraumdarstellung

k-Raum-Darstellung. Randstruktur

Peierls-Verzerrung, Falten von Bändern

2-dimensionaler Fall: Ebene Netze

Grundsätzliches

Quadratische Netze (Squarium)

Graphit (Graphen) (s.a. IV)

3-dimensionaler Fall

Grundsätzliches

Kubisch primitives Gitter (Cubium)

Beispiele: \alpha-Po, P, As, Se

(s.a. IV)

1-dimensionaler Fall: Unendliche Ketten

Realraumdarstellung

k-Raum-Darstellung. Randstruktur

Peierls-Verzerrung, Falten von Bändern

2-dimensionaler Fall: Ebene Netze

Grundsätzliches

Quadratische Netze

(Squarium)

Graphit (Graphen) (s.a. IV)

3-dimensionaler Fall

Grundsätzliches

Kubisch primitives Gitter (Cubium)

Beispiele: \alpha-Po, P, As, Se (s.a. IV)

Zusammenfassung

LCAO: Wahl nicht-symmetrieangepaßter Koordinaten (ϕ 's der Atome)

Bestimmung der RR

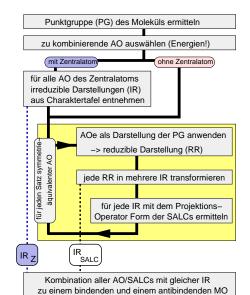
(Spuren der Transformationsmatrizen unter ieder SO)

Ausreduzieren
$$a_i = \frac{1}{h} \sum_S \chi(S) \chi_i(S)$$
 \Downarrow

mehrere IR (Kombinationen von ϕ 's) mit elementarem Symmetrieverhalten (vgl. Charaktertafeln)

neue Koordinaten, orthogonal zueinander: $\int \phi_i \phi_i d\tau = 0$

 \mapsto Blockdiagonalisierung von C

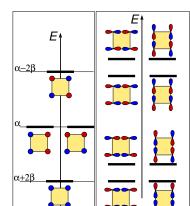


mit der Symmetrie der IR

Beispiel: H_4 als kleiner Ring (PG D_{4h})

BS I: Vom Molekül zum Festkörper

Caroline Röhr



IR/RR	Ε (C_4 (C_2 (C_2'	$C_2^{\prime\prime}$	i	S_4 (σ_h	σ_v	σ_d		
a_{1g}	1	1	1	1	1	1	1	1	1	1		$x^2 + y^2, z^2$
a_{2g}	1	1	1 -	-1 -	-1	1	1	1 -	-1-	-1	R_z	
b_{1g}	1 -	-1	1	1 -	-1	1 -	-1	1	1 -	-1		$x^2 - y^2$
b_{2g}	1 -	-1	1 -	-1	1	1 -	-1	1 -	-1	1		xy
e_g	2	0 -	$^{-2}$	0	0	2	0 -	$^{-2}$	0	0	(R_x, R_y)	(xz,yz)
a_{1u}	1	1	1	1	1 -	-1-	-1-	-1-	-1-	-1		
a_{2u}	1	1	1 -	-1 -	-1-	-1-	-1	-1	1	1	z	
b_{1u}	1 -	-1	1	1 -	-1-	-1	1 -	-1-	-1	1		
b_{2u}	1 -	-1	1 -	-1	1 -	-1	1 -	-1	1 -	-1		
e_u	2	0 -	-2	0	0 -	-2	0	2	0	0	(x, y)	
4 s	4	0	0	2	0	0	0	4	2	0	$a_{1g} + b_{1g}$	$g + e_u$
$4 p_z$	4	0	0	0	0	0	0 -	$^{-4}$	0 -	-4	$a_{2u} + b_2$	$u + e_g$
$8 p_{x,y}$	8	0 -	-8	0	0	0	0	0	0	0	$2 e_u + 2$	e_g

0-dimensionaler Fall: Atome + Moleküle (Wdh.)

Atomorbitale

Molekülorbitale (LCAO und daraus folgende 'Lösungs'-Ansätze)

1-dimensionaler Fall: Unendliche Ketten

Realraumdarstellung k-Raum-Darstellung, Bandstruktur

PEIERLS-Verzerrung, Falten von Bändern

2-dimensionaler Fall: Ebene Netze

Grundsätzliches

Quadratische Netze

Quadratische Netze (Squarium)

Graphit (Graphen) (s.a. IV)

3-dimensionaler Fall

Grundsätzliches

Kubisch primitives Gitter (Cubium)

Beispiele: α -Po, P, As, Se (s.a. IV)

HÜCKEL-Ansatz zur 'Berechnung' der Eigenenergien (Bsp. H₂) (Wdh.)

BS I: Vom Molekül zum Festkörper Caroline Röhr

O-dimensionaler Fall: Atome + Moleküle (Wdh.)

Atomorbitale

Molekülorbitale (LCAO und daraus folgende

'Lösungs'-Ansätze) 1-dimensionaler Fall: Unendliche Ketten

Realraumdarstellung

k-Raum-Darstellung. Randstruktur

Peierls-Verzerrung, Falten von Bändern

2-dimensionaler Fall: Ebene Netze

Grundsätzliches

Quadratische Netze

(Squarium)

Graphit (Graphen) (s.a. IV)

3-dimensionaler Fall

Grundsätzliches

(s.a. IV)

Kubisch primitives Gitter (Cubium) Beispiele: \alpha-Po, P, As, Se

Zusammenfassung

ohne Kenntnis der Wellenfunktion

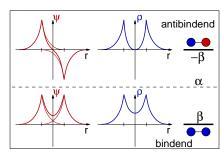
- ► Zerlegung des Hamilton-Operators in
 - ► $H_{11} = H_{22} = \int \phi_1^* \hat{H} \phi_1 d\tau = \alpha = E_0$ ('Coulomb-Integral', $\langle \phi_1^* | H | \phi_1 \rangle$)
 - \blacktriangleright $H_{12} = H_{21} = \int \phi_1^* \hat{H} \phi_2 d\tau = \beta$ ('Austausch-Integral', $\langle \phi_1^* | H | \phi_2 \rangle$)
- ► Säkulardeterminante (Hückel-Determinante) muß verschwinden (sonst nur triviale Lösungen)

$$|H_{ij} - E\delta_{ij}| = 0$$

damit folgt:

$$\left| \begin{array}{cc} \alpha - E & \beta \\ \beta & \alpha - E \end{array} \right| = 0$$

- ightharpoonup \mapsto quadratische Gleichung mit den Lösungen
 - \triangleright $E_b = \alpha + \beta$
 - \triangleright $E_{ab} = \alpha \beta$



LCAO-Ansatz

zum Festkörper Caroline Böhr

BS I: Vom Molekül

- allgemeiner Lösungsansatz (LCAO)
- Zustände im Molekül (ψ) aus Atomzuständen (atomare Wellenfunktionen ϕ) zusammengesetzt:

$$\psi = c_1 \phi_1 + c_2 \phi_2 + \dots + c_i \phi_i = \sum_i c_i \phi_i$$

in Vektor-Schreibweise:

$$\begin{pmatrix} \psi_1 \\ \psi_2 \\ \dots \\ \psi_i \end{pmatrix} = \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1i} \\ \dots & c_{22} & \dots & \dots \\ \dots & \dots & \dots & \dots \\ c_{i1} & \dots & \dots & c_{ii} \end{pmatrix} \begin{pmatrix} \phi_1 \\ \phi_2 \\ \dots \\ \phi_i \end{pmatrix}$$

oder kurz, in Matrix-Schreibweise:

$$\vec{\psi} = C \vec{\phi}$$

- ightharpoonup Lösung = Suche nach passenden Koeffizienten c_{ij}
- $ightharpoonup \mapsto \text{Roothaan-Hall-Gleichung} \mapsto$

O-dimensionaler Fall:

Atome + Moleküle Atomorbitale

Molekülorbitale (LCAO und daraus folgende 'Lösungs'-Ansätze)

(Wdh.)

1-dimensionaler Fall:

Unendliche Ketten Realraumdarstellung k-Raum-Darstellung.

Randstruktur Peierls-Verzerrung, Falten

2-dimensionaler Fall: Ebene Netze

Grundsätzliches

Quadratische Netze

von Bändern

(Squarium) Graphit (Graphen) (s.a. IV)

3-dimensionaler Fall Grundsätzliches

Kubisch primitives Gitter

(Cubium)

Beispiele: \alpha-Po, P, As, Se

(s.a. IV)

'Berechnung' nach dem Variationsverfahren

Caroline Böhr

BS I: Vom Molekül

zum Festkörper

O-dimensionaler Fall: Atome + Moleküle (Wdh.)

im Rahmen der LCAO-Näherung

- \blacktriangleright LCAO: Minimierung von E in Bezug auf die Koffizienten c_i
- Säkulargleichungen bzw. in Matrixschreibweise (ROOTHAAN-HALL-Gleichung)

$$HC = \epsilon SC$$

- ▶ mit
 - ▶ H: Hamiltonian

Mathematik*

- ▶ C: Koeffizientenmatrix
- ightharpoonup ϵ : Diagonalmatrix der E-Eigenwerte
- ▶ S: Überlappungsmatrix (mit Integralen $\int \phi_s^* \phi_r d\tau$)
- \blacktriangleright lineares Gleichungssystem \mapsto Lösung mit Standardmethoden der Numerischen

Atomorbitale Molekülorbitale (LCAO und

daraus folgende 'Lösungs'-Ansätze)

1-dimensionaler Fall: Unendliche Ketten

Realraumdarstellung k-Raum-Darstellung.

Randstruktur Peierls-Verzerrung, Falten

von Bändern 2-dimensionaler Fall:

Ebene Netze

Grundsätzliches

Quadratische Netze

(Squarium)

Graphit (Graphen) (s.a. IV)

3-dimensionaler Fall

Grundsätzliches

Kubisch primitives Gitter (Cubium)

Beispiele: \alpha-Po, P, As, Se (s.a. IV) Zusammenfassung

implementiert in Libraries wie MKL (Intel), openBLAS, libGOTO etc.

ROOTHAAN-HALL-Gleichung (Wdh. 1)

BS I: Vom Molekül zum Festkörper

▶ LCAO \mapsto jede der n Lösungen i ist eine Linearkombination aus n AO r:

$$\psi_i = \sum_{r=1}^n c_{ir} \phi_r$$

▶ Einsetzen in die Schrödinger-Gleichung, z.B. beim HF-Verfahren: (mit $\hat{H}=\hat{h}_{\text{eff}}$ als HF-Einelektronenoperator)

$$\hat{H} \sum_{r=1}^{n} c_{ir} \phi_r = \epsilon_i \sum_{r=1}^{n} c_{ir} \phi_r$$

 $lackbox{}{}$ von links mit ϕ_s^* multiplizieren und integrieren ergibt i Gleichungen

$$\sum_{r=1}^{n} c_{ir} \int \phi_s^* \hat{H} \phi_r d\tau = \epsilon_i \sum_{r=1}^{n} c_{ir} \int \phi_s^* \phi_r d\tau$$

ightharpoonup Gleichungssystem in Matrixschreibweise: $HC = \epsilon SC$

CLEMENS C. J. ROOTHAAN¹ 29.8.1918-17.6.2019

0-dimensionaler Fall: Atome + Moleküle (Wdh.)

Atomorbitale

Molekülorbitale (LCAO und daraus folgende 'Lösungs'-Ansätze)

1-dimensionaler Fall: Unendliche Ketten

Realraumdarstellung k-Raum-Darstellung.

Bandstruktur
PEIERLS-Verzerrung, Falten

von Bändern
2-dimensionaler Fall:

Ebene Netze Grundsätzliches

Grundsatzliches
Ouadratische Netze

(Squarium)

Graphit (Graphen) (s.a. IV)

3-dimensionaler Fall

Grundsätzliches

Kubisch primitives Gitter (Cubium)

Beispiele: α-Po, P, As, Se (s.a. IV)

¹The University of Chicago, Photographic Archive

ROOTHAAN-HALL-Gleichung (Wdh. 2)

BS I: Vom Molekül zum Festkörper

Caroline Böhr

0-dimensionaler Fall: Atome + Moleküle (Wdh.)

Atomorbitale

Molekülorbitale (LCAO und daraus folgende 'Lösungs'-Ansätze)

1-dimensionaler Fall: Unendliche Ketten

Realraumdarstellung

k-Raum-Darstellung. Randstruktur

Peierls-Verzerrung, Falten von Bändern

2-dimensionaler Fall: Ebene Netze

Grundsätzliches

Quadratische Netze (Squarium)

Graphit (Graphen) (s.a. IV)

3-dimensionaler Fall

Grundsätzliches

Kubisch primitives Gitter (Cubium) Beispiele: \alpha-Po, P, As, Se

Zusammenfassung

(s.a. IV)

 \blacktriangleright von links mit ϕ_s^* multiplizieren und integrieren ergibt i Gleichungen

$$\sum_{r=1}^{n} c_{ir} \int \phi_s^* \hat{H} \phi_r d\tau = \epsilon_i \sum_{r=1}^{n} c_{ir} \int \phi_s^* \phi_r d\tau$$

► Gleichungssystem in Matrixschreibweise:

$$HC = \epsilon SC$$

► mit

 \blacktriangleright H: HF-Matrix, die wegen der e^- - e^- -WW von c abhängt

▶ C: Matrix der LCAO-Koeffizienten

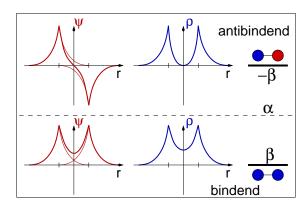
 \triangleright ϵ : Diagonalmatrix der Energieeigenwerte

• S: Überlappungsmatrix (mit Integralen $\int \phi_s^* \phi_r d\tau$)

CLEMENS C. J. ROOTHAAN¹ 29.8.1918-17.6.2019

¹The University of Chicago, Photographic Archive

Chemische Bindung



- ▶ Bindung = positive Interferenz der Wellenfunktionen
- ▶ Quantifizierung: Überlappungsintegral $S = \int \phi_i \phi_j d\tau = \langle \phi_1 | \phi_2 \rangle = \langle 1 | 2 \rangle = \langle 2 | 1 \rangle$
 - $ightharpoonup S = \oplus$: positive Überlappung, bindend
 - ightharpoonup S = 0: nicht-bindend
 - ▶ $S = \ominus$ negative Überlappung, antibindend

BS I: Vom Molekül zum Festkörper

Caroline Röhr

 $\begin{aligned} &0\text{-}dimensionaler Fall:} \\ &Atome + Moleküle\\ &(Wdh.) \end{aligned}$

Atomorbitale

Molekülorbitale (LCAO und daraus folgende 'Lösungs'-Ansätze)

1-dimensionaler Fall: Unendliche Ketten

Realraumdarstellung

k-Raum-Darstellung,

PEIERLS-Verzerrung, Falten von Bändern

2-dimensionaler Fall: Ebene Netze

Grundsätzliches

Quadratische Netze (Squarium)

Graphit (Graphen) (s.a. IV)

3-dimensionaler Fall

Grundsätzliches

Kubisch primitives Gitter (Cubium)

Beispiele: α-Po, P, As, Se (s.a. IV)

'Berechnung' der Eigenenergien

Caroline Röhr

BS I: Vom Molekül

zum Festkörper

bei Kenntnis der Wellenfunktion

- ▶ z.B. in allen iterativen SCF-Verfahren
- Einsetzen von ψ in Schrödinger-Gleichung $\hat{H}\psi = E\psi$
- nach Multiplikation mit ψ^* und Integration über Raum

$$\int \psi^* \hat{H} \psi d\tau = \int \psi^* E \psi d\tau$$

E als Konstante vorziehen und nach E auflösen (!! Voraussetzung: E-unabhängige Basisfunktionen!)

$$E = \frac{\int \psi^* \hat{H} \psi d\tau}{\int \psi^* \psi d\tau}$$

(Wdh.) Atomorbitale

Molekülorbitale (LCAO und

O-dimensionaler Fall: Atome + Moleküle

daraus folgende 'Lösungs'-Ansätze)

1-dimensionaler Fall: Unendliche Ketten

Realraumdarstellung k-Raum-Darstellung. Bandstruktur

Peierls-Verzerrung, Falten von Bändern

2-dimensionaler Fall: Ebene Netze

Grundsätzliches

Quadratische Netze

(Squarium) Graphit (Graphen) (s.a. IV)

3-dimensionaler Fall

Grundsätzliches Kubisch primitives Gitter

Beispiele: \alpha-Po, P, As, Se (s.a. IV)

(Cubium)

1-dimensionaler Fall: Unendliche Ketten Realraumdarstellung

Peierls-Verzerrung, Falten von Bändern

k-Raum-Darstellung, Bandstruktur

zum Festkörper Caroline Böhr 0-dimensionaler Fall:

BS I: Vom Molekül

Atome + Moleküle (Wdh.) Atomorbitale

Molekülorbitale (LCAO und daraus folgende 'Lösungs'-Ansätze)

Unendliche Ketten

Realraumdarstellung k-Raum-Darstellung. Randstruktur Peierls-Verzerrung, Falten

von Bändern 2-dimensionaler Fall:

Ebene Netze Grundsätzliches Quadratische Netze

(Squarium) Graphit (Graphen) (s.a. IV)

3-dimensionaler Fall

Grundsätzliches

Kubisch primitives Gitter

(Cubium)

Beispiele: \alpha-Po, P, As, Se

(s.a. IV)

BS I: Vom Molekül 0-dimensionaler Fall: Atome + Moleküle (Wdh.) 1-dimensionaler Fall: Unendliche Ketten Atomorbitale Realraumdarstellung Molekülorbitale (LCAO und daraus folgende 'Lösungs'-Ansätze) 1-dimensionaler Fall: Unendliche Ketten Realraumdarstellung

k-Raum-Darstellung. Randstruktur

Peierls-Verzerrung, Falten von Bändern 2-dimensionaler Fall: Ebene Netze

zum Festkörper Caroline Böhr

Grundsätzliches Quadratische Netze (Squarium)

Graphit (Graphen) (s.a. IV)

3-dimensionaler Fall Grundsätzliches Kubisch primitives Gitter

(Cubium)

Beispiele: \alpha-Po, P, As, Se (s.a. IV)

Ketten als unendlich große Ringe

Caroline Röhr

0-dimensionaler Fall: Atome + Moleküle (Wdh.)

 ${\bf Atomorbitale}$

Molekülorbitale (LCAO und daraus folgende 'Lösungs'-Ansätze)

1-dimensionaler Fall: Unendliche Ketten

Realraumdarstellung

 $k\text{-Raum-Darstellung},\\ \text{Bandstruktur}$

PEIERLS-Verzerrung, Falten von Bändern

2-dimensionaler Fall: Ebene Netze

 ${\bf Grunds \"{a}tzliches}$

Quadratische Netze (Squarium)

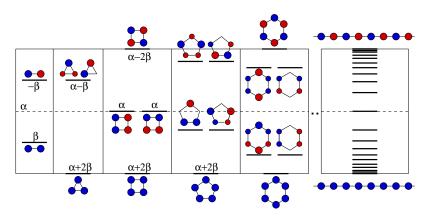
Graphit (Graphen) (s.a. IV)
3-dimensionaler Fall

.....

Grundsätzliches

Kubisch primitives Gitter (Cubium) Beispiele: α -Po, P, As, Se

(s.a. IV)



- \blacktriangleright immer größere Ringe, z.B. von 1s-AO
 - ▶ 1:2:1 für 4 1*s*
 - $\blacktriangleright\,$ 1:2:2:1 für 6 1s (vgl. Benzol bei $p_z)$
 - **.**
 - ightharpoonup ightharpoonup große Ringe

Ketten als unendlich große Ringe (Forts.)

Caroline Böhr

O-dimensionaler Fall: Atome + Moleküle (Wdh.)

Atomorbitale

Molekülorbitale (LCAO und daraus folgende 'Lösungs'-Ansätze)

1-dimensionaler Fall: Unendliche Ketten

Realraumdarstellung

k-Raum-Darstellung. Bandetruktur

Peierls-Verzerrung, Falten von Bändern

2-dimensionaler Fall: Ebene Netze

Grundsätzliches

Quadratische Netze

(Squarium)

Graphit (Graphen) (s.a. IV)

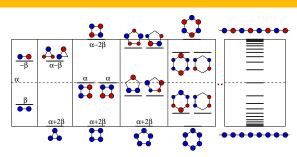
3-dimensionaler Fall

Grundsätzliches

Kubisch primitives Gitter

(Cubium) Beispiele: \alpha-Po, P, As, Se

(s.a. IV)



- günstigster Zustand (voll bindend, unten)
 - ► volle Symmetrie der Punktgruppe (Γ-Punkt)
 - energetisch 2β (2 Bindungen/Atom!) unter α
 - \blacktriangleright komplett positive Überlappung der ϕ s aller AO
- ungünstigster Zustand (voll antibindend, oben)
 - ▶ von AO zu AO wechselndes Vorzeichen von φ
 - \triangleright energetisch 2β oberhalb von α
 - zwischen benachbarten AO immer antibindend
- ... dazwischen
 - ... immer mehr Zustände ... bis zu unendlich vielen (Kontinuum)
 - keine homogene Verteilung der Niveaus (an den 'Rändern' höhere Niveau-Dichte)

BS I: Vom Molekül zum Festkörper Caroline Böhr 0-dimensionaler Fall: Atome + Moleküle (Wdh.) 1-dimensionaler Fall: Unendliche Ketten Atomorbitale Molekülorbitale (LCAO und daraus folgende k-Raum-Darstellung, Bandstruktur 'Lösungs'-Ansätze) 1-dimensionaler Fall: Unendliche Ketten Realraumdarstellung k-Raum-Darstellung. Randstruktur Peierls-Verzerrung, Falten von Bändern 2-dimensionaler Fall: Ebene Netze Grundsätzliches Quadratische Netze (Squarium)

Graphit (Graphen) (s.a. IV)

3-dimensionaler Fall Grundsätzliches

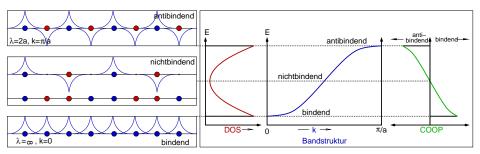
(Cubium)

Kubisch primitives Gitter

Beispiele: \alpha-Po, P, As, Se

(s.a. IV)

... übersetzt in die 'Sprache' der FK-Physik



- ▶ DOS (Density of States, in [Zustände/(eV·Zelle)])
 - \blacktriangleright im FK nicht jedes einzelne MO wichtig, da ∞ -viele
 - \blacktriangleright DOS (Zustandsdichte): Zahl der Zustände im E-Bereich
 - ▶ bindend: DOS hoch
 - ▶ nichtbindend: DOS am niedrigsten
 - antibindend: DOS hoch
- ► COOP (Crystal Orbital Overlap Population) Dichte bindender/antibindender Zustände

BS I: Vom Molekül zum Festkörper

Caroline Röhr

 $\begin{aligned} &0\text{-}dimensionaler Fall:} \\ &Atome + Moleküle \\ &(Wdh.) \end{aligned}$

Atomorbitale

Molekülorbitale (LCAO und daraus folgende 'Lösungs'-Ansätze)

1-dimensionaler Fall: Unendliche Ketten

Realraumdarstellung

k-Raum-Darstellung, Bandstruktur

PEIERLS-Verzerrung, Falten von Bändern

2-dimensionaler Fall: Ebene Netze

Grundsätzliches

Quadratische Netze (Squarium)

Graphit (Graphen) (s.a. IV)

3-dimensionaler Fall

Grundsätzliches

Kubisch primitives Gitter (Cubium)

Beispiele: α -Po, P, As, Se (s.a. IV)

LCAO-Beschreibung

BS I: Vom Molekül zum Festkörper

O-dimensionaler Fall:

Molekülorbitale (LCAO und

1-dimensionaler Fall:

Unendliche Ketten Realraumdarstellung

k-Raum-Darstellung,
Bandstruktur
PEIERLS-Verzerrung, Falten

2-dimensionaler Fall: Ebene Netze

Graphit (Graphen) (s.a. IV)

3-dimensionaler Fall

von Bändern

Grundsätzliches

Grundsätzliches

Kubisch primitives Gitter

(Cubium)

(s.a. IV)

Quadratische Netze (Squarium)

Atome + Moleküle (Wdh.)

Atomorbitale

daraus folgende 'Lösungs'-Ansätze)

Caroline Röhr

► Voraussetzung

- ▶ translationssymmetrische Anordnung der Atomorbitale
- ► Gitterkonstante/Gittervektor: a (1-dimensional)
- ightharpoonup a enthält die gesamte Symmetrie-Information (vgl. Lsg. bei H_2^+ !)
- ► Prinzip, Ziel
 - ▶ Bildung der MOs als SALC von AO (analog Moleküle)

$$\psi = \sum_{n} c_n \phi_n$$

- ▶ ... wie bei Molekülen auch ...
- \blacktriangleright statt freier Wahl der $c_n \mapsto$ an Symmetrie (hier Translation) adaptiert!
- ▶ Lösung \mapsto BLOCH¹-Funktionen

$$\psi_k = \sum_n \underbrace{e^{ikna}}_{c's} \phi_n$$

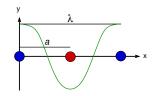
- ► Bloch-Theorem (s. III)
- ▶ ?? \Downarrow anschaulich ?? k ??

Zusammenfassung

Beispiele: \alpha-Po, P, As, Se

¹: Felix Bloch (1905-1983)

Ableitung und Erklärung



▶ cos-Funktion beschreibt den Vorzeichenwechsel (VZW):

$$y = \cos \frac{2\pi}{\lambda} x$$

- ▶ AO müssen nach Translation (Symmetrie!) aufeinander zu liegen kommen
- ightharpoonup x muß ganzzahliges Vielfaches von a sein (x = na)
- ► damit:

$$y = \cos \frac{2\pi}{\lambda} na$$

ightharpoonup Wertebereich für λ :

$$\underbrace{2a}_{\text{max. VZW}} \le \lambda \le \underbrace{\infty}_{\text{kein VZW}}$$

BS I: Vom Molekül zum Festkörper

Caroline Röhr

0-dimensionaler Fall: Atome + Moleküle

(Wdh.)

Atomorbitale

Molekülorbitale (LCAO und daraus folgende 'Lösungs'-Ansätze)

1-dimensionaler Fall: Unendliche Ketten

Realraumdarstellung

k-Raum-Darstellung, Bandstruktur

PEIERLS-Verzerrung, Falten von Bändern

2-dimensionaler Fall: Ebene Netze

Grundsätzliches

Grundsätzliches

Quadratische Netze

(Squarium)

Graphit (Graphen) (s.a. IV)

3-dimensionaler Fall

Grundsätzliches

Kubisch primitives Gitter (Cubium)

Beispiele: α-Po, P, As, Se (s.a. IV)

Ableitung und Erklärung (Forts.)

Caroline Röhr

Wertebereich für λ :

$$\underbrace{2a}_{\text{max. VZW}} \le \lambda \le \underbrace{\infty}_{\text{kein VZW}}$$

 \triangleright mit Wellenvektor k

$$k = \frac{2\pi}{\lambda}$$

- folgt: $y = \cos kna$ oder allgemeiner: $y = e^{ikna}$
- Funktion, die den Verlauf der Koeffizienten c_n beschreibt (q.e.d.)
- für die Gesamtwellenfunktion:

$$\psi_k = \sum_n e^{ikna} \phi_n$$

 \blacktriangleright Wertebereich für k (aus dem von λ oben)

$$\underbrace{\frac{\pi}{a}}_{\text{max. VZW}} \ge k \ge \underbrace{0}_{\text{kein VWZ}}$$

relaubter Bereich für k = 1. Brillouin¹-Zone (1. BZ) = reziproke Linie

Atome + Moleküle (Wdh.) Atomorbitale

O-dimensionaler Fall:

BS I: Vom Molekül

zum Festkörper

Molekülorbitale (LCAO und

daraus folgende 'Lösungs'-Ansätze)

1-dimensionaler Fall: Unendliche Ketten

Realraumdarstellung

k-Raum-Darstellung.

Randstruktur

Peierls-Verzerrung, Falten von Bändern

2-dimensionaler Fall: Ebene Netze

Grundsätzliches

Quadratische Netze

(Squarium)

Graphit (Graphen) (s.a. IV)

3-dimensionaler Fall

Grundsätzliches

Kubisch primitives Gitter

(Cubium)

Beispiele: \alpha-Po, P, As, Se (s.a. IV)

^{1:} Léon Nicolas Brillouin (1889-1969)

Bedeutung von k

Caroline Röhr

Atomorbitale

Molekülorbitale (LCAO und daraus folgende 'Lösungs'-Ansätze)

1-dimensionaler Fall: Unendliche Ketten

Realraumdarstellung k-Raum-Darstellung.

Randstruktur Peierls-Verzerrung, Falten

von Bändern 2-dimensionaler Fall:

Ebene Netze

Grundsätzliches

Quadratische Netze

(Squarium)

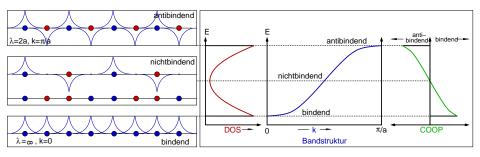
Graphit (Graphen) (s.a. IV)

3-dimensionaler Fall

Grundsätzliches

Kubisch primitives Gitter (Cubium)

Beispiele: \alpha-Po, P, As, Se (s.a. IV)



- λ bzw. Wellenzahl $(k=\frac{2\pi}{\lambda})$ beschreiben Vorzeichenwechsel
- Wertebereich für k (1. BZ)
 - ▶ bindend: $\lambda = \infty$; k=0 (Γ-Punkt, maximale Symmetrie)
 - ▶ antibindend: $\lambda = 2a$; $k = \frac{\pi}{a}$
 - ightharpoonup nichtbindend: $\lambda = 4a$
- ightharpoonup Bandstruktur: E = f(k)
- 1 Band = 1 s-AO/Elementarzelle = $2 e^{-}/EZ$

Konkretes Beispiel: 1s-Atomkette

BS I: Vom Molekül zum Festkörper

Caroline Röhr

 $\lambda = \infty$ bzw. $k = 0 \mapsto e^{ikna} = e^0 = 1$

$$\mapsto \psi_{k=0} = \sum_n \phi_n$$
 (alle AO gleiches Vorzeichen)

▶
$$\lambda = 2a$$
 bzw. $k = \frac{\pi}{a} \mapsto e^{i\frac{\pi}{a}na} = e^{i\pi n} = (-1)^n$
 $\mapsto \psi_{k=\frac{\pi}{a}} = \sum_{n} (-1)^n \phi_n$ (benachbarte AO mit unterschiedlichem VZ)

$$\triangleright$$
 E als $f(k)$ (Bandstruktur)

- \blacktriangleright ψ in Schrödinger-Gleichung einsetzen (... längliche Rechnung ...)
- ▶ 'Lösung' (nach HÜCKEL):

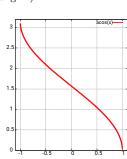
$$E_k = \alpha + 2\beta \cos ka$$

(mit: β : 'Austausch'integral; α : 'Coulomb'-Integral)

ightharpoonup damit: $k \sim \arccos(E)$

$$k = 0 \mapsto E = \alpha + 2\beta$$

$$k = \frac{\pi}{a} \mapsto E = \alpha - 2\beta$$



O-dimensionaler Fall: Atome + Moleküle

(Wdh.)

Atomorbitale

Molekülorbitale (LCAO und daraus folgende

'Lösungs'-Ansätze) 1-dimensionaler Fall: Unendliche Ketten

Realraumdarstellung

k-Raum-Darstellung. Randstruktur

Peierls-Verzerrung, Falten von Bändern

2-dimensionaler Fall:

Ebene Netze Grundsätzliches

Quadratische Netze

(Squarium) Graphit (Graphen) (s.a. IV)

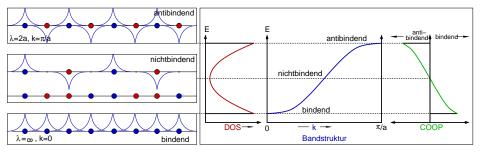
3-dimensionaler Fall

Grundsätzliches

Kubisch primitives Gitter (Cubium)

Beispiele: \alpha-Po, P, As, Se (s.a. IV)

Bandverläufe und -dispersion



- ightharpoonup maximale Steigung des Bandes bei $\frac{\pi}{2a}$
- ▶ Bandverlauf s-AO: Band steigt von k = 0 ($\lambda = \infty$) nach $k = \frac{\pi}{a}$ ($\lambda = 2a$)
- ▶ Dispersion/Bandbreite = f(Überlappung) (Hückel: $E_k = \alpha + 2\beta \cos ka$)
 - ▶ Variation von β (WW zwischen AO)
 - \blacktriangleright 'Austauschintegral' β groß
 - ightharpoonup DOS mit größerer $E ext{-Breite}$
 - ▶ Bänder mit größerer Dispersion
 - \blacktriangleright Variation von a:
 - ▶ $a \operatorname{groß} \mapsto \cos ka \text{ klein} \mapsto \text{kleine Bandbreite}$
 - ▶ $a \text{ klein} \mapsto \text{Dispersion/Bandbreite groß}$

BS I: Vom Molekül zum Festkörper

Caroline Röhr

0-dimensionaler Fall: Atome + Moleküle (Wdh.)

Atomorbitale

Molekülorbitale (LCAO und daraus folgende 'Lösungs'-Ansätze)

1-dimensionaler Fall:

Realraumdarstellung

k-Raum-Darstellung, Bandstruktur

PEIERLS-Verzerrung, Falten von Bändern

2-dimensionaler Fall: Ebene Netze

Grundsätzliches

Quadratische Netze (Squarium)

Graphit (Graphen) (s.a. IV)

3-dimensionaler Fall

Grundsätzliches

undsatziiches

Kubisch primitives Gitter (Cubium)

Beispiele: α -Po, P, As, Se (s.a. IV)

Bandverläufe (s- und p-Bänder)

BS I: Vom Molekül zum Festkörper

Caroline Röhr

Atomorbitale

Molekülorbitale (LCAO und daraus folgende

1-dimensionaler Fall:

Unendliche Ketten

Realraumdarstellung

'Lösungs'-Ansätze)

k-Raum-Darstellung, Bandstruktur

PEIERLS-Verzerrung, Falten von Bändern

2-dimensionaler Fall: Ebene Netze

Grundsätzliches

Quadratische Netze

(Squarium)

Graphit (Graphen) (s.a. IV)

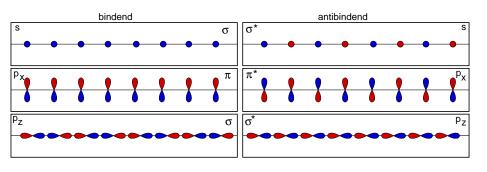
3-dimensionaler Fall

Grundsätzliches

Kubisch primitives Gitter

(s.a. IV)

(Cubium) Beispiele: α -Po, P, As, Se



- ightharpoonup Bandverlauf = f(Symmetrie der AO relativ zur Gesamtsymmetrie)
- ► Vergleich
 - ▶ s und p_x ohne VZW bindend $(\lambda = \infty, k = 0)$
 - ▶ $p_z \mapsto$ bindend bei maximalem VZW ($\lambda = 2a, k = \frac{\pi}{a}$)

Bandverläufe, allgemein

Caroline Röhr

Atomorbitale

Molekülorbitale (LCAO und daraus folgende

'Lösungs'-Ansätze)

Unendliche Ketten

Realraumdarstellung

Peierls-Verzerrung, Falten von Bändern

2-dimensionaler Fall: Ebene Netze

Grundsätzliches

Quadratische Netze

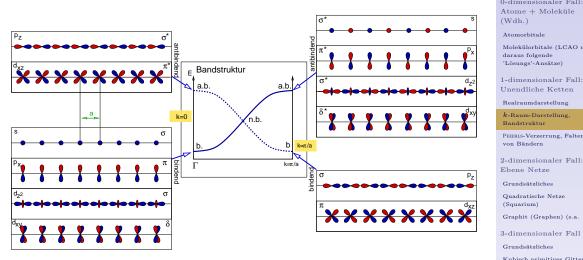
(Squarium)

Graphit (Graphen) (s.a. IV)

Grundsätzliches

Kubisch primitives Gitter (Cubium)

Beispiele: α -Po, P, As, Se (s.a. IV)



zum Festkörper Caroline Böhr 0-dimensionaler Fall: Atome + Moleküle (Wdh.) 1-dimensionaler Fall: Unendliche Ketten Atomorbitale Molekülorbitale (LCAO und daraus folgende 'Lösungs'-Ansätze) Peierls-Verzerrung, Falten von Bändern 1-dimensionaler Fall: Unendliche Ketten Realraumdarstellung k-Raum-Darstellung. Bandetruktur Peierls-Verzerrung, Falten von Bändern 2-dimensionaler Fall: Ebene Netze Grundsätzliches Quadratische Netze (Squarium) Graphit (Graphen) (s.a. IV)

Zusammenfassur

ıbium) .. IV)

Kubisch primitives Gitter (Cubium)
Beispiele: α-Po, P, As, Se (s.a. IV)

BS I: Vom Molekül

3-dimensionaler Fall Grundsätzliches

Peierls-Verzerrung

Caroline Röhr

BS I: Vom Molekül

zum Festkörper

0-dimensionaler Fall: Atome + Moleküle

für H-Atom-Kette sofort ersichtlich

- bei Halbbesetzung des 1s-Bandes
- → Verzerrung der Kette zu H₂-Molekülen energetisch bevorzugt
- ► Peierls-Verzerrung
 - ▶ Gitterinstabilitäten bei partieller Besetzung bestimmter Bänder
 - ▶ 'JAHN-TELLER-Effekt' des Festkörpers
- ▶ durch Verzerrung → Änderung der Translationseinheit (EZ)

(Wdh.) Atomorbitale Molekülorbitale (LCAO und

daraus folgende 'Lösungs'-Ansätze)

1-dimensionaler Fall: Unendliche Ketten

Realraumdarstellung k-Raum-Darstellung. Bandstruktur

Peierls-Verzerrung, Falten

von Bändern 2-dimensionaler Fall:

Ebene Netze

Grundsätzliches

Quadratische Netze

(Squarium) Graphit (Graphen) (s.a. IV)

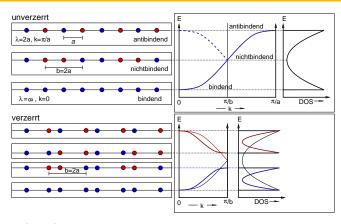
3-dimensionaler Fall

Grundsätzliches Kubisch primitives Gitter

Beispiele: \alpha-Po, P, As, Se (s.a. IV)

(Cubium)

Falten von Bändern



▶ unverzerrt (oben)

- \blacktriangleright Bandstruktur in k, einfache Gitterkonstante a
- ightharpoonup Beschreibung mit doppelter Gitterkonstante (b=2a)
- \blacktriangleright doppelt soviele AO in der EZ \mapsto doppelte Zahl von Bändern
- ▶ *E-k*-Plot: da $b=2a\mapsto k$ nur bis $\frac{\pi}{b}=\frac{\pi}{2a}$
- ightharpoonup entspricht 'Zurückfalten' des Bandes \mapsto 2 Bänder
- ► Zellvergrößerung = Verkleinerung der BZ

BS I: Vom Molekül zum Festkörper

Caroline Röhr

0-dimensionaler Fall: Atome + Moleküle (Wdh.)

Atomorbitale

Molekülorbitale (LCAO und daraus folgende

'Lösungs'-Ansätze)

1-dimensionaler Fall: Unendliche Ketten

Realraumdarstellung

k-Raum-Darstellung, Bandstruktur

Peierls-Verzerrung, Falten von Bändern

2-dimensionaler Fall: Ebene Netze

 ${\bf Grunds \"{a}tzliches}$

Quadratische Netze

(Squarium)

Graphit (Graphen) (s.a. IV)

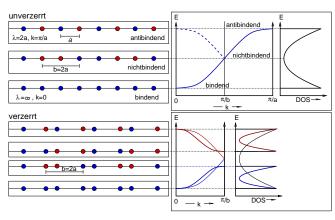
3-dimensionaler Fall

Grundsätzliches

Kubisch primitives Gitter (Cubium)

Beispiele: α -Po, P, As, Se (s.a. IV)

Falten von Bändern



- ▶ verzerrt (unten)
 - ▶ verzerrte 1s H-Kette
 - \blacktriangleright Beschreibung nur in b~(=2a)möglich (2 Bänder, 2 AO/EZ)

 - ▶ 2 neue Bänder:

BS I: Vom Molekül zum Festkörper

Caroline Röhr

 $\begin{aligned} &0\text{-}dimensionaler Fall:} \\ &Atome + Moleküle\\ &(Wdh.) \end{aligned}$

Atomorbitale

Molekülorbitale (LCAO und daraus folgende

'Lösungs'-Ansätze)

1-dimensionaler Fall: Unendliche Ketten

Realraumdarstellung

k-Raum-Darstellung, Bandstruktur

Peierls-Verzerrung, Falten von Bändern

2-dimensionaler Fall: Ebene Netze

 $Grunds\"{a}tzliches$

Quadratische Netze (Squarium)

Graphit (Graphen) (s.a. IV)

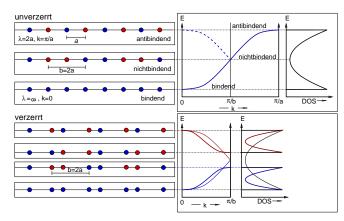
3-dimensionaler Fall

Grundsätzliches

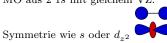
Kubisch primitives Gitter (Cubium)

Beispiele: α -Po, P, As, Se (s.a. IV)

Falten von Bändern



- ▶ unteres Band $(H_2, \sigma\text{-bindend})$
 - ▶ von Γ steigend
 - \blacktriangleright MO aus 2 1s mit gleichem VZ:



- oberes Band (H_2 , σ -antibindend)
 - ightharpoonup von Γ fallend
 - ightharpoonup MO aus 2 1s mit unterschiedlichen

VZ: Symmetrie wie p_z

BS I: Vom Molekül zum Festkörper

Caroline Röhr

0-dimensionaler Fall: Atome + Moleküle (Wdh.)

Atomorbitale

Molekülorbitale (LCAO und daraus folgende 'Lösungs'-Ansätze)

Losungs -Ansatze)

1-dimensionaler Fall: Unendliche Ketten

Realraumdarstellung

k-Raum-Darstellung, Bandstruktur

Peierls-Verzerrung, Falten von Bändern

2-dimensionaler Fall: Ebene Netze

Grundsätzliches

Quadratische Netze (Squarium)

Graphit (Graphen) (s.a. IV)

3-dimensionaler Fall

Grundsätzliches

Kubisch primitives Gitter (Cubium)

Beispiele: α -Po, P, As, Se (s.a. IV)

(Wdh.) Atomorbitale 1-dimensionaler Fall: 2-dimensionaler Fall: Ebene Netze Bandetruktur Grundsätzliches Quadratische Netze (Squarium) Graphit (Graphen) (s.a. IV)

0-dimensionaler Fall: Atome + Moleküle

BS I: Vom Molekül zum Festkörper Caroline Böhr

Molekülorbitale (LCAO und daraus folgende 'Lösungs'-Ansätze)

Unendliche Ketten Realraumdarstellung k-Raum-Darstellung.

Peierls-Verzerrung, Falten von Bändern

Grundsätzliches

Quadratische Netze

(Squarium)

Graphit (Graphen) (s.a. IV)

3-dimensionaler Fall

Grundsätzliches

(Cubium)

Kubisch primitives Gitter

(s.a. IV)

Beispiele: \alpha-Po, P, As, Se

zum Festkörper Caroline Böhr 0-dimensionaler Fall: Atome + Moleküle (Wdh.) Atomorbitale Molekülorbitale (LCAO und daraus folgende 'Lösungs'-Ansätze) 1-dimensionaler Fall: Unendliche Ketten Realraumdarstellung 2-dimensionaler Fall: Ebene Netze k-Raum-Darstellung. Bandetruktur Grundsätzliches Peierls-Verzerrung, Falten von Bändern 2-dimensionaler Fall: Ebene Netze Grundsätzliches Quadratische Netze (Squarium) Graphit (Graphen) (s.a. IV) 3-dimensionaler Fall

Grundsätzliches Kubisch primitives Gitter (Cubium)

Beispiele: \alpha-Po, P, As, Se (s.a. IV)

Zusammenfassung

BS I: Vom Molekül

2-dimensionaler Fall

Caroline Böhr

0-dimensionaler Fall:

BS I: Vom Molekül

zum Festkörper

Atome + Moleküle (Wdh.) Atomorbitale

Molekülorbitale (LCAO und

daraus folgende 'Lösungs'-Ansätze) 1-dimensionaler Fall:

Unendliche Ketten Realraumdarstellung

k-Raum-Darstellung. Bandetruktur

Peierls-Verzerrung, Falten von Bändern

2-dimensionaler Fall: Ebene Netze

Grundsätzliches

Quadratische Netze

(Squarium)

Graphit (Graphen) (s.a. IV)

3-dimensionaler Fall

Grundsätzliches

Kubisch primitives Gitter

(Cubium)

Beispiele: \alpha-Po, P, As, Se (s.a. IV)

Zusammenfassung

► Annäherung an 'echte' Festkörper = 3D

analog zur H-Atome Kette \mapsto Modellsystem: quadratisches Netz aus H-Atomen

jeweils aus s- und p-Orbitalen

wie bei H-Kette:

▶ Überlegungen im Realraum (Energien, Bloch-Funktionen)

 $k \mapsto \text{Vektor im 2-Dimensionalen} \mapsto \text{Flächendarstellungen}(k_{x,y})$ ▶ Bänder sind Flächen in k

ightharpoonup Wigner-Seitz-Zelle = 1. BZ = erlaubte Bereiche für k

 $ightharpoonup E_F \text{ in } k \mapsto \underline{\text{Fermi-Linie}}$

einfachstes Modell: Squarium

► reale Struktur: Graphit (Graphen)

BS I: Vom Molekül zum Festkörper Caroline Böhr 0-dimensionaler Fall: Atome + Moleküle (Wdh.) Atomorbitale Molekülorbitale (LCAO und daraus folgende 'Lösungs'-Ansätze) 1-dimensionaler Fall: Unendliche Ketten Realraumdarstellung 2-dimensionaler Fall: Ebene Netze k-Raum-Darstellung. Randstruktur Peierls-Verzerrung, Falten Quadratische Netze (Squarium) von Bändern 2-dimensionaler Fall: Ebene Netze Grundsätzliches Quadratische Netze (Squarium) Graphit (Graphen) (s.a. IV) 3-dimensionaler Fall Grundsätzliches Kubisch primitives Gitter (Cubium) Beispiele: \alpha-Po, P, As, Se

(s.a. IV)
Zusammenfassung

s-AO im quadratischen Gitter, Realraum

- BS I: Vom Molekül zum Festkörper
- 0-dimensionaler Fall: Atome + Moleküle (Wdh.)
- Atomorbitale
- Molekülorbitale (LCAO und daraus folgende
- 'Lösungs'-Ansätze)

 1-dimensionaler Fall:
 Unendliche Ketten
- Realraumdarstellung
- k-Raum-Darstellung,
- PEIERLS-Verzerrung, Falten von Bändern
- 2-dimensionaler Fall: Ebene Netze

Grundsätzliches

Quadratische Netze (Squarium)

Graphit (Graphen) (s.a. IV)

3-dimensionaler Fall

dimensionaler i

Grundsätzliches

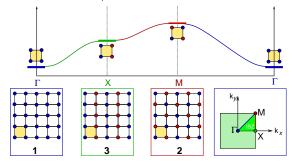
Kubisch primitives Gitter (Cubium)

Beispiele: α -Po, P, As, Se (s.a. IV)

Zusammenfassung

ightharpoonup Struktur a = b

EZ enthält $4/4 = 1 \text{ AO} \rightarrow 1 \text{ Band/AO}$



- ► Energien/Bandverläufe (anschaulich)
 - ${\bf 0}$ am günstigsten: alle ϕ mit gleichem VZ (maximal bindend, Bandunterkante)
 - $\ensuremath{\mathfrak{g}}$ ungünstigster Zustand: in alle Richtungen wechselnde VZ (maximal antibindend, Bandoberkante)
 - $\ensuremath{\mathfrak{g}}$ weitere ausgezeichnete Zustände:
 - ▶ in 1. Richtung alle VZ gleich, in 2. Richtung stets wechselnd
 - $\blacktriangleright\,$ im quadratischen Gitter E-entartet, bei Vertauschung von x und y

s-AO im quadratischen Gitter, k-Raum

- BS I: Vom Molekül zum Festkörper
 - Caroline Röhr

0-dimensionaler Fall: Atome + Moleküle

(Wdh.)

Atomorbitale

Molekülorbitale (LCAO und daraus folgende

'Lösungs'-Ansätze)

1-dimensionaler Fall: Unendliche Ketten

Realraumdarstellung

 $k\text{-Raum-Darstellung},\\ \text{Bandstruktur}$

PEIERLS-Verzerrung, Falten von Bändern

2-dimensionaler Fall: Ebene Netze

 $Grunds\"{a}tzliches$

Quadratische Netze (Squarium)

Graphit (Graphen) (s.a. IV)

3-dimensionaler Fall

Grundsätzliches

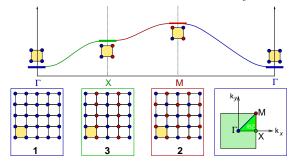
(s.a. IV)

Kubisch primitives Gitter (Cubium) Beispiele: α-Po, P, As, Se

Zusammenfassung

▶ BLOCH-Funktion beschreibt VZW

▶ \vec{k} ist Vektor mit den Komponenten $k_x = \frac{2\pi}{\lambda_x}$ und $k_y = \frac{2\pi}{\lambda_y}$



- ▶ für die drei Spezialfälle:

 - ② $\lambda_x = \lambda_y = 2a = 2b \mapsto k_x = k_y = \frac{\pi}{a} = \frac{\pi}{b}$ k_x und k_y maximal (M-Punkt)
 - $\&k_x = \frac{\pi}{a} \text{ und } k_y = 0 \text{ (X-Punkt)}$

Bandstruktur

BS I: Vom Molekül zum Festkörper

Caroline Röhr

0-dimensionaler Fall: Atome + Moleküle (Wdh.)

Atomorbitale

Molekülorbitale (LCAO und daraus folgende 'Lösungs'-Ansätze)

1-dimensionaler Fall: Unendliche Ketten

Realraumdarstellung

k-Raum-Darstellung, Bandstruktur

Peierls-Verzerrung, Falten von Bändern

2-dimensionaler Fall: Ebene Netze

Grundsätzliches

Quadratische Netze (Squarium)

Graphit (Graphen) (s.a. IV)

3-dimensionaler Fall

Grundsätzliches

Kubisch primitives Gitter (Cubium)

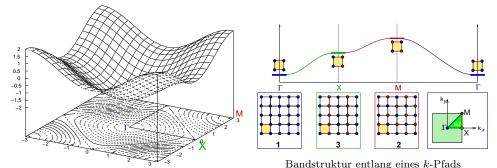
Beispiele: α -Po, P, As, Se (s.a. IV)

Zusammenfassung

► E-Fläche zwischen $\vec{k} = (0,0)$ und $(\frac{\pi}{a}, \frac{\pi}{b})$ (BZ)

▶ analog HÜCKEL für 1s der Kette:

$$f(x,y) = -(\cos(x) + \cos(y))$$
 (zwischen $-\pi$ und $+\pi$ in x,y)

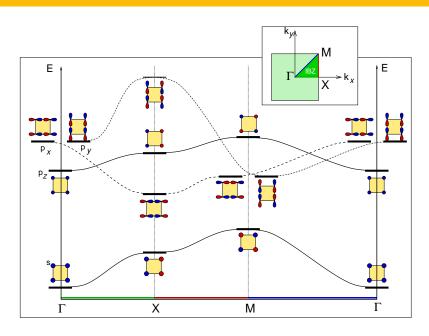


Bandstruktur entlang en

komplette Bandstruktur

- \blacktriangleright k-Fläche: Symmetrie des reziproken Raums (PG + i = Lauesymmetrie)
- ▶ irreduzibler Teil der BZ (IBZ)

Squarium: s- und p-Bänder



BS I: Vom Molekül zum Festkörper

Caroline Röhr

0-dimensionaler Fall: Atome + Moleküle (Wdh.)

Atomorbitale

Molekülorbitale (LCAO und daraus folgende 'Lösungs'-Ansätze)

1-dimensionaler Fall:

Unendliche Ketten

Realraumdarstellung

k-Raum-Darstellung, Bandstruktur

Peierls-Verzerrung, Falten von Bändern

2-dimensionaler Fall: Ebene Netze

Grundsätzliches

Quadratische Netze (Squarium)

Graphit (Graphen) (s.a. IV)

3-dimensionaler Fall

 ${\bf Grunds \"{a}tzliches}$

Kubisch primitives Gitter (Cubium)

Beispiele: α -Po, P, As, Se (s.a. IV)

Übung: Squarium: d-Bänder

- 1 Zeichnen Sie die reale Struktur von Squarium und die reziproke k-Ebene mit den speziellen Punkten Γ , X und M.
- 2 Skizzieren Sie die Bandstruktur (Pfad $\Gamma \to X \to M \to \Gamma$) der Bänder, die sich durch Linearkombination der d_{xy} - und der $d_{x^2-y^2}$ -Atomorbitale ergeben (s. 3).
- 3 Begründen Sie den Bandverlauf anhand der 'Molekülorbitale', die zu den jeweiligen speziellen Punkten gehören. Welcher Bindungscharakter liegt jeweils vor?

	9	0 0	
AO	Γ (0,0,0)	$X(0,0,\frac{1}{2})$	$M(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$
d_{xy}			
$d_{x^2-y^2}$			

BS I: Vom Molekül zum Festkörper Caroline Röhr

Atome + Moleküle (Wdh.)

0-dimensionaler Fall:

Atomorbitale

Molekülorbitale (LCAO und daraus folgende

'Lösungs'-Ansätze)

1-dimensionaler Fall: Unendliche Ketten Realraumdarstellung

k-Raum-Darstellung. Bandstruktur Peierls-Verzerrung, Falten

von Bändern 2-dimensionaler Fall:

Ebene Netze

Grundsätzliches

Quadratische Netze (Squarium)

Graphit (Graphen) (s.a. IV)

3-dimensionaler Fall

Grundsätzliches Kubisch primitives Gitter

(Cubium) Beispiele: \alpha-Po, P, As, Se (s.a. IV)

Übung: Squarium: d-Bänder	BS I: Vom Molekül zum Festkörper
	Caroline Röhr
	0-dimensionaler Fall: Atome + Moleküle (Wdh.)
	Atomorbitale
	Molekülorbitale (LCAO und daraus folgende 'Lösungs'-Ansätze)
	1-dimensionaler Fall: Unendliche Ketten
	Realraumdarstellung
	k-Raum-Darstellung, Bandstruktur
	PEIERLS-Verzerrung, Falten von Bändern
	2-dimensionaler Fall: Ebene Netze
	Grundsätzliches
	Quadratische Netze (Squarium)
	Graphit (Graphen) (s.a. IV)
	3-dimensionaler Fall
	Grundsätzliches
	Kubisch primitives Gitter (Cubium)
	Beispiele: α-Po, P, As, Se (s.a. IV)
	Zusammenfassung

zum Festkörper Caroline Böhr 0-dimensionaler Fall: Atome + Moleküle (Wdh.) Atomorbitale Molekülorbitale (LCAO und daraus folgende 'Lösungs'-Ansätze) 1-dimensionaler Fall: Unendliche Ketten Realraumdarstellung 2-dimensionaler Fall: Ebene Netze k-Raum-Darstellung. Randstruktur Peierls-Verzerrung, Falten von Bändern 2-dimensionaler Fall: Graphit (Graphen) (s.a. IV) Ebene Netze Grundsätzliches Quadratische Netze (Squarium) Graphit (Graphen) (s.a. IV) 3-dimensionaler Fall Grundsätzliches Kubisch primitives Gitter (Cubium) Beispiele: \alpha-Po, P, As, Se (s.a. IV)

BS I: Vom Molekül

Graphit (Graphen) (! nur p_z -AO; s.a. IV)

Caroline Röhr

0-dimensionaler Fall: Atome + Moleküle (Wdh.)

Atomorbitale

Molekülorbitale (LCAO und daraus folgende 'Lösungs'-Ansätze)

1-dimensionaler Fall: Unendliche Ketten

Realraumdarstellung

k-Raum-Darstellung, Bandstruktur

Peierls-Verzerrung, Falten von Bändern

2-dimensionaler Fall: Ebene Netze

 ${\bf Grunds \"{a}tzliches}$

Quadratische Netze (Squarium)

Graphit (Graphen) (s.a. IV)

3-dimensionaler Fall

${\bf Grunds \"{a}tzliches}$

Kubisch primitives Gitter (Cubium)

Beispiele: α -Po, P, As, Se (s.a. IV)

real (Elementarzelle)	α-3β α-β α-β	π*
reziprok (Brillouin–Zone)	α+β	π

Graphit (FP-LAPW-Rechnung)

BS I: Vom Molekül zum Festkörper

Caroline Röhr

Atomorbitale

Molekülorbitale (LCAO und daraus folgende 'Lösungs'-Ansätze)

1-dimensionaler Fall: Unendliche Ketten

Realraumdarstellung

k-Raum-Darstellung, Bandstruktur

Peierls-Verzerrung, Falten von Bändern

2-dimensionaler Fall: Ebene Netze

Grundsätzliches

Quadratische Netze (Squarium)

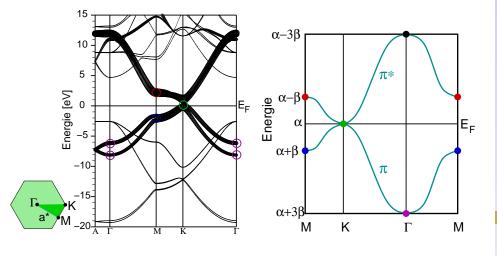
$Graphit\ (Graphen)\ (s.a.\ IV)$

3-dimensionaler Fall

Grundsätzliches

Kubisch primitives Gitter (Cubium)

Beispiele: α -Po, P, As, Se (s.a. IV)



3-dimensionaler Fall Grundsätzliches Kubisch primitives Gitter (Cubium) Beispiele: α -Po, P, As, Se (s.a. IV)

Caroline Böhr 0-dimensionaler Fall: Atome + Moleküle (Wdh.)

BS I: Vom Molekül zum Festkörper

Atomorbitale Molekülorbitale (LCAO und daraus folgende 'Lösungs'-Ansätze)

1-dimensionaler Fall:

Unendliche Ketten Realraumdarstellung k-Raum-Darstellung. Randstruktur

Peierls-Verzerrung, Falten von Bändern 2-dimensionaler Fall:

Ebene Netze Grundsätzliches Quadratische Netze

(Squarium)

Graphit (Graphen) (s.a. IV)

Grundsätzliches

Kubisch primitives Gitter

(Cubium)

Beispiele: \alpha-Po, P, As, Se

(s.a. IV)

zum Festkörper Caroline Böhr 0-dimensionaler Fall: Atome + Moleküle (Wdh.) Atomorbitale Molekülorbitale (LCAO und daraus folgende 'Lösungs'-Ansätze) 1-dimensionaler Fall: Unendliche Ketten Realraumdarstellung k-Raum-Darstellung. Randstruktur Peierls-Verzerrung, Falten von Bändern 2-dimensionaler Fall: Ebene Netze Grundsätzliches 3-dimensionaler Fall Quadratische Netze (Squarium) Grundsätzliches Graphit (Graphen) (s.a. IV) 3-dimensionaler Fall

Grundsätzliches Kubisch primitives Gitter (Cubium)

(s.a. IV)

Beispiele: \alpha-Po, P, As, Se

BS I: Vom Molekül

3-dimensionaler Fall

Caroline Röhr

0-dimensionaler Fall:

BS I: Vom Molekül

zum Festkörper

Atome + Moleküle Atomorbitale

(Wdh.)

Molekülorbitale (LCAO und

daraus folgende 'Lösungs'-Ansätze)

1-dimensionaler Fall: Unendliche Ketten

Realraumdarstellung k-Raum-Darstellung.

Randstruktur

Peierls-Verzerrung, Falten von Bändern

2-dimensionaler Fall: Ebene Netze

Grundsätzliches Quadratische Netze

(Squarium)

Graphit (Graphen) (s.a. IV)

3-dimensionaler Fall

Grundsätzliches

Kubisch primitives Gitter (Cubium) Beispiele: \alpha-Po, P, As, Se

(s.a. IV)

Zusammenfassung

► reale Festkörper

 $ightharpoonup \vec{k} \mapsto \text{Vektor in 3D}$

ightharpoonup Plot $E \sim k_{x,y,z}$ unmöglich

→ Projektionen entlang ausgezeichneter Richtungen ('Spaghetti'-Plots)

Brillouin-Zone (Wigner-Seitz-Zelle, erlaubte Bereiche für k) ist dreidimensionaler Körper

 $ightharpoonup E_F \text{ in } \vec{k} \mapsto \text{Fermi-Fläche}$

einfachstes Modell: Cubium

▶ reale Struktur: α -Po \mapsto As, Sb, Se (Peierls-verzerrt)

3-dimensionaler Fall

Kubisch primitives Gitter (Cubium)

Atome + Moleküle (Wdh.) Atomorbitale Molekülorbitale (LCAO und daraus folgende

'Lösungs'-Ansätze) 1-dimensionaler Fall: Unendliche Ketten Realraumdarstellung k-Raum-Darstellung.

Randstruktur Peierls-Verzerrung, Falten von Bändern 2-dimensionaler Fall: Ebene Netze Grundsätzliches Quadratische Netze

Graphit (Graphen) (s.a. IV)

3-dimensionaler Fall Grundsätzliches Kubisch primitives Gitter

(Squarium)

(Cubium)

BS I: Vom Molekül zum Festkörper Caroline Böhr 0-dimensionaler Fall:

Beispiele: \alpha-Po, P, As, Se

(s.a. IV) Zusammenfassung

Kubisch primitives Gitter (Cubium)

BS I: Vom Molekül zum Festkörper

O-dimensionaler Fall:

Caroline Röhr

Struktur: α-Po-Typ, Cubium, kubisch primitives Gitter

 $1 \text{ AO/EZ} \mapsto 1 \text{ Band/Orbital des Atoms}$

BZ = Würfel

Punkte im k-Raum:

 $\Gamma = Ursprung (Zonenzentrum)$

2 $X: (0,0,\frac{1}{2})\frac{2\pi}{3}$ (d.h. maximaler VZW entlang einer der Achsen)

3 $K: (0,\frac{1}{2},\frac{1}{2})\frac{2\pi}{a}$ (d.h. max. VZW entlang einer Flächendiagonalen

4 $M: (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}) \frac{2\pi}{a}$ (d.h. max. VZW entlang Raumdiagonalen) Atome + Moleküle Atomorbitale

(Wdh.)

Molekülorbitale (LCAO und

daraus folgende 'Lösungs'-Ansätze)

1-dimensionaler Fall: Unendliche Ketten

Realraumdarstellung k-Raum-Darstellung.

Bandstruktur

Peierls-Verzerrung, Falten von Bändern

2-dimensionaler Fall: Ebene Netze

Grundsätzliches

Quadratische Netze

(Squarium) Graphit (Graphen) (s.a. IV)

3-dimensionaler Fall

Grundsätzliches

Kubisch primitives Gitter

(Cubium) Beispiele: \alpha-Po, P, As, Se

(s.a. IV)

LCAO von s-AO

Caroline Röhr

O-dimensionaler Fall: Atome + Moleküle (Wdh.)

Atomorbitale

Molekülorbitale (LCAO und daraus folgende

'Lösungs'-Ansätze)

1-dimensionaler Fall: Unendliche Ketten

Realraumdarstellung

k-Raum-Darstellung. Randstruktur

Peierls-Verzerrung, Falten von Bändern

2-dimensionaler Fall: Ebene Netze

Grundsätzliches

Quadratische Netze (Squarium)

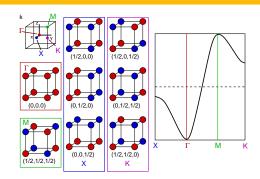
Graphit (Graphen) (s.a. IV)

3-dimensionaler Fall

Grundsätzliches

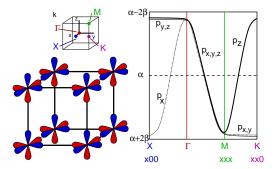
Kubisch primitives Gitter (Cubium)

Beispiele: \alpha-Po, P, As, Se (s.a. IV)



- **1** Γ : alle VZ gleich \mapsto günstigster Fall: $6 \times$ bindende Nachbarn
- 2 M: maximaler VZW entlang [111]
 - \mapsto damit auch maximaler VZW in x, y und z
 - \mapsto ungünstigster Fall: $6 \times$ antibindend
- **3** X: nur in eine Richtung (X) maximale VZW
 - → bindende WW in die beiden anderen Richtungen
 - \mapsto energetisch noch günstig: 4× b., 2× a.b.
- **a** K: in 2 Richtungen max. VZW \mapsto ingesamt antibindend: $2 \times b$., $4 \times a.b$.

LCAO von p-AO



- \triangleright ohne π -WW!
- ightharpoonup spezielle Punkte und Pfade im k-Raum:
 - ightharpoonup: alle mit gleichem VZ \mapsto nur a.b. WW
 - ▶ $\Gamma \Longrightarrow X$: \mapsto in x mehr VZW $\mapsto p_x$ Bänder fallen von Γ nach X

 $\mapsto p_y$ und p_z bleiben gleich (VZ egal, da keine WW)

- ▶ $\Gamma \Longrightarrow M$ ([111]): \mapsto in alle Richtungen mehr VZW \mapsto alle Bänder fallen
- ightharpoonup M: für alle p-AO bindende WW
- ▶ $M \Longrightarrow K$ (xx0): \mapsto in z wieder weniger VZW $\mapsto p_z$ steigt energetisch; $\mapsto p_x$ und p_y bleiben gleich

BS I: Vom Molekül zum Festkörper

Caroline Röhr

0-dimensionaler Fall: Atome + Moleküle (Wdh.)

Atomorbitale

Molekülorbitale (LCAO und daraus folgende 'Lösungs'-Ansätze)

1-dimensionaler Fall: Unendliche Ketten

Realraumdarstellung

k-Raum-Darstellung, Bandstruktur

PEIERLS-Verzerrung, Falten von Bändern

2-dimensionaler Fall: Ebene Netze

 ${\bf Grunds\"{a}tzliches}$

Quadratische Netze (Squarium)

Graphit (Graphen) (s.a. IV)

3-dimensionaler Fall

Grundsätzliches

Kubisch primitives Gitter

3-dimensionaler Fall

Beispiele: α -Po, P, As, Se (s.a. IV)

zum Festkörper Caroline Böhr

BS I: Vom Molekül

Atome + Moleküle (Wdh.)

0-dimensionaler Fall:

Atomorbitale

Molekülorbitale (LCAO und daraus folgende

'Lösungs'-Ansätze) 1-dimensionaler Fall:

Unendliche Ketten Realraumdarstellung

k-Raum-Darstellung. Randstruktur

Peierls-Verzerrung, Falten

von Bändern

2-dimensionaler Fall: Ebene Netze

Grundsätzliches

Quadratische Netze (Squarium)

Graphit (Graphen) (s.a. IV)

3-dimensionaler Fall

Grundsätzliches

Kubisch primitives Gitter

(Cubium)

Beispiele: \alpha-Po, P, As, Se

(s.a. IV)

Caroline Röhr

0-dimensionaler Fall: Atome + Moleküle (Wdh.)

Atomorbitale

Molekülorbitale (LCAO und daraus folgende

'Lösungs'-Ansätze)

1-dimensionaler Fall: Unendliche Ketten

Realraumdarstellung

k-Raum-Darstellung, Bandstruktur

Peierls-Verzerrung, Falten von Bändern

2-dimensionaler Fall: Ebene Netze

Grundsätzliches

Quadratische Netze (Squarium)

Graphit (Graphen) (s.a. IV)

3-dimensionaler Fall

Grundsätzliches

Kubisch primitives Gitter (Cubium)

Beispiele: α -Po, P, As, Se (s.a. IV)

Zusammenfassung

► Strukturstabilisierung analog H-1s-Kette im 1D

▶ Peierls-Verzerrung, Bildung von H₂, Zellvergrösserung

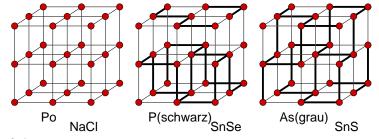
▶ Entartung bei Halbbesetzung des Bandes aufgehoben ('Falten' des Bandes)

► Bandlücke

► E-Gewinn für System

▶ analog in 3D ausgehend von α -Po \mapsto Verzerrungsvarianten

► s^2p^3 : P_{schwarz} und As_{grau} (CN 3+3)

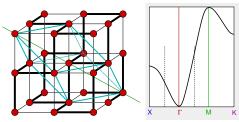


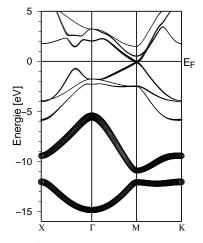
- ► s^2p^4 : Se (CN 2+4)
- ▶ insgesamt 36 Möglichkeiten der Strukturverzerrung

Beispiel: Arsen

- BS I: Vom Molekül zum Festkörper
 - Caroline Röhr

- ▶ e⁻-Konfiguration: s^2p^3
- ightharpoonup 2 Atome/EZ \mapsto gefaltete Bänder
- ▶ 2 s-Bänder voll besetzt = nichtbindend
- ▶ p jeweils mit 1 e⁻ besetzt \mapsto 3 Bänder unter E_F
- ightharpoonup Verzerrung entlang xxx
- ► (Pseudo)Bandlücke (vgl. H₂), dadurch energetisch günstigere besetzte Zustände





FP-LAPW-Rechnung, 1000 k-Punkte, PBE-GGA, Wien2k, As-s FAT-bands

 $\begin{array}{l} \hbox{0-dimensionaler Fall:} \\ \hbox{Atome} + \hbox{Moleküle} \\ \hbox{(Wdh.)} \end{array}$

Atomorbitale

 ${\it Molek\"ulorbitale} \ ({\it LCAO} \ {\it und} \ {\it daraus} \ {\it folgende} \ \\$

'Lösungs'-Ansätze)

1-dimensionaler Fall: Unendliche Ketten

Realraumdarstellung

k-Raum-Darstellung, Bandstruktur

PEIERLS-Verzerrung, Falten von Bändern

2-dimensionaler Fall: Ebene Netze

Grundsätzliches

Quadratische Netze

1:: (0 1

Graphit (Graphen) (s.a. IV)

3-dimensionaler Fall

Grundsätzliches

Kubisch primitives Gitter (Cubium)

Beispiele: α -Po, P, As, Se (s.a. IV)

Zusammenfassung

BS I: Vom Molekül zum Festkörper

Caroline Böhr

0-dimensionaler Fall: Atome + Moleküle (Wdh.)

Atomorbitale

'Lösungs'-Ansätze)

Molekülorbitale (LCAO und daraus folgende

1-dimensionaler Fall: Unendliche Ketten

Realraumdarstellung k-Raum-Darstellung.

Randstruktur Peierls-Verzerrung, Falten

von Bändern 2-dimensionaler Fall:

Ebene Netze

Grundsätzliches

Quadratische Netze

(Squarium)

Graphit (Graphen) (s.a. IV)

3-dimensionaler Fall

Grundsätzliches

Kubisch primitives Gitter

(Cubium) Beispiele: \alpha-Po, P, As, Se

(s.a. IV)

Zusammenfassung

- Wdh. AO, MOs mit LCAO (Symmetrie nützlich)
- Translation: Bildung von Bloch-Summen $\mapsto k$ -Abhängigkeit von ψ
- Topologie der Bänder = Symmetrie der AO und von deren WW
- PEIERLS-Verzerrung erfordert Zellvergrößerung → 'Zurückfalten' der Bänder

Bandstruktur, DOS, COOP (mit einfachen HÜCKEL-Parametern quantifizierbar)

1D - 2D - 3D: k-Pfade

BS I: Vom Molekül zum Festkörper Caroline Röhr

Atome + Moleküle (Wdh.) Atomorbitale

0-dimensionaler Fall:

Molekülorbitale (LCAO und daraus folgende 'Lösungs'-Ansätze)

1-dimensionaler Fall: Unendliche Ketten Realraumdarstellung

k-Raum-Darstellung. Randstruktur

Peierls-Verzerrung, Falten von Bändern

2-dimensionaler Fall: Ebene Netze

Grundsätzliches

Quadratische Netze

(Squarium)

Graphit (Graphen) (s.a. IV)

3-dimensionaler Fall

Grundsätzliches

Kubisch primitives Gitter (Cubium)

Beispiele: \alpha-Po, P, As, Se (s.a. IV)