BS II: NFE-Ansatz

Caroline Röhr

1-dimensionaler Fall

Teilchen im Kasten, potentialfrei (Wdh.)

Teilchen im Kasten, mit periodischem Potential der Rümpfe

2-dimensionaler Fall

Allgemeines

Beispiel: Squarium

Reziprokes Gitter, k-Flächen/-Raum, BZ

3-dimensionaler Fall, einfache Metalle

Allgemeines

Bandstrukturen

FERMI-Flächen

Zustandsdichten

Zusammenfassung

Bandstrukturen II: NFE-Ansatz (nearly free electron) Quantenchemische Rechenmethoden: Grundlagen und Anwendungen

http://ruby.chemie.uni-freiburg.de/Vorlesung/Seminare/m+k_bs_II.pdf

Caroline Röhr

Universität Freiburg, Institut für Anorganische und Analytische Chemie

 $\rm SS~2025$

Teilchen im Kasten, potentialfrei (Wdh.) Teilchen im Kasten, mit periodischem Potential der Rümpfe

2 2-dimensionaler Fall

Allgemeines Beispiel: Squarium Reziprokes Gitter, k-Flächen/-Raum, BZ

3-dimensionaler Fall, einfache Metalle Allgemeines Bandstrukturen FERMI-Flächen Zustandsdichten

4 Zusammenfassung

BS II: NFE-Ansatz

Caroline Röhr

1-dimensionaler Fall

Teilchen im Kasten, potentialfrei (Wdh.)

Teilchen im Kasten, mit periodischem Potential der Rümpfe

2-dimensionaler Fall

Allgemeines

Beispiel: Squarium

Reziprokes Gitter, k-Flächen/-Raum, BZ

3-dimensionaler Fall, einfache Metalle

Allgemeines

Bandstrukturen

FERMI-Flächen

Zustandsdichten

Zusammenfassung

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- Lehrbücher der Festkörperphysik:
 - Ch. Kittel: Festkörperphysik, Oldenbourg, 14. Auflage, 2006.
 - R. Gross, A. Marx: Festkörperphysik, De Gruyter, 2014.
 - G. Grosso, G. P. Parravicini: Solid State Physics, Elsevier, 2014.
 - N. W. Ashcroft, N. D. Mermin, D. Wei: Solid State Physics, Cengage Learning Asia, 2016.
- ▶ Richard M. Martin, Electronic Structure, Cambridge University Press.
- Uichiro Mizutani: Introduction to the Electron Theory of Metals, Cambridge University Press, 2001.

Caroline Röhr

1-dimensionaler Fall

Teilchen im Kasten, potentialfrei (Wdh.)

Teilchen im Kasten, mit periodischem Potential der Rümpfe

2-dimensionaler Fall

Allgemeines

Beispiel: Squarium

Reziprokes Gitter, k-Flächen/-Raum, BZ

3-dimensionaler Fall, einfache Metalle

Allgemeines

Bandstrukturen

FERMI-Flächen

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Zustandsdichten

BS II: NFE-Ansatz

Caroline Röhr

1-dimensionaler Fall

Teilchen im Kasten, potentialfrei (Wdh.)

Teilchen im Kasten, mit periodischem Potential der Rümpfe

2-dimensionaler Fall

Allgemeines

Beispiel: Squarium

Reziprokes Gitter, k-Flächen/-Raum, BZ

3-dimensionaler Fall, einfache Metalle

Allgemeines

Bandstrukturen

FERMI-Flächen

Zustandsdichten

Zusammenfassung

1 dimensionaler Fall

Teilchen im Kasten, potentialfrei (Wdh.) Teilchen im Kasten, mit periodischem Potential der Rümpfe

2 -dimensionaler Fall

Allgemeines Beispiel: Squarium Reziprokes Gitter, *k*-Flächen/-Raum, BZ

3-dimensionaler Fall, einfache Metalle Allgemeines Bandstrukturen FERMI-Flächen Zustandsdichten

4 Zusammenfassung

|▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 - のへ⊙

Teilchen im Kasten, potentialfrei (Wdh.)

Teilchen im Kasten, mit periodischem Potential der Rümpfe

2 -dimensionaler Fall

Allgemeines Beispiel: Squarium Reziprokes Gitter, *k*-Flächen/-Raum, BZ

3-dimensionaler Fall, einfache Metalle Allgemeines Bandstrukturen FERMI-Flächen Zustandsdichten

4 Zusammenfassung

BS II: NFE-Ansatz

Caroline Röhr

1-dimensionaler Fall

Teilchen im Kasten, potentialfrei (Wdh.)

Teilchen im Kasten, mit periodischem Potential der Rümpfe

2-dimensionaler Fall

Allgemeines

Beispiel: Squarium

Reziprokes Gitter, k-Flächen/-Raum, BZ

3-dimensionaler Fall, einfache Metalle

Allgemeines

Bandstrukturen

FERMI-Flächen

Zustandsdichten

Zusammenfassung

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Modell

- \blacktriangleright 1D Kiste der Länge L
- kein Potential im Kasten

Eigenwertproblem der Energie vergleichsweise einfach, da nur

kinetische Energie der Elektronen zu berücksichtigen

$$\hat{H}\psi(x) = E\psi(x)$$

• aus der kinetischen Energie $p = m_e v$ und $E = \frac{1}{2}m_e v^2$, d.h. $E = \frac{p^2}{2m_e}$

folgt f
ür die Schr
ödingergleichung

$$\frac{\hat{p}^2}{2m_e}\psi(x) = E\psi(x)$$

▶ bzw. mit dem Impuls
operator $\hat{p} = -i\hbar\frac{d}{dx}$ bleibt als Eigenwertproblem:

$$-\frac{\hbar^2}{2m_e}\frac{d^2}{dx^2}\psi(x) = E\psi(x) \xrightarrow[]{\text{atomare}} -\frac{1}{2}\nabla^2\psi(x) = E\psi(x)$$

Caroline Röhr

1-dimensionaler Fall

Teilchen im Kasten, potentialfrei (Wdh.)

Teilchen im Kasten, mit periodischem Potential der Rümpfe

2-dimensionaler Fall

Allgemeines

Beispiel: Squarium

Reziprokes Gitter, k-Flächen/-Raum, BZ

3-dimensionaler Fall, einfache Metalle

Allgemeines

Bandstrukturen

FERMI-Flächen

Zustandsdichten

Zusammenfassung

 $\hbar = 1$; Masse: $m_e = 1 \mapsto$ Länge in Bohr (1 Bohr = 52.9 pm); E in Hartee ($\frac{1}{2}$ Ha = 1 Ryd = 13.6 eV) $= -9 \land (2 \times 10^{-5})$

Teilchen im Kasten, potentialfrei: Lösungen des Eigenwertproblems

- ▶ mit der Randbedingung $0 \le x \le L$ (L = 'Kastenlänge')
- **Eigenwerte:** $E \propto$ Quadrat der Quantenzahl n^2

$$E_n = \frac{h^2 n^2}{8m_e L^2}$$

 \blacktriangleright mit¹

$$k = \pm \frac{\pi}{L}n$$

► folgt:

$$E = \frac{\hbar^2 k^2}{2m_e} \xrightarrow[\text{Einheiten}]{\text{atomare}} E = \frac{1}{2}k^2$$

Eigenfunktionen: ebene Wellen (PW²) sin x und cos x bzw. e^{ikx}

$$\psi_n = e^{ikx} = \cos k_n x + i \sin k_n x \quad \text{mit} \quad k_n = \pm \frac{\pi}{L} n$$

BS II: NFE-Ansatz

Caroline Röhr

1-dimensionaler Fall

Teilchen im Kasten, potentialfrei (Wdh.)

Teilchen im Kasten, mit periodischem Potential der Rümpfe

2-dimensionaler Fall

Allgemeines

Beispiel: Squarium

Reziprokes Gitter, k-Flächen/-Raum, BZ

3-dimensionaler Fall, einfache Metalle

Allgemeines

Bandstrukturen

FERMI-Flächen

Zustandsdichten

Zusammenfassung

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ● のへで

¹ mit $n \in \mathbb{N}$, also 1, 2, 3 etc.; ²: PW = plane wave

Teilchen im Kasten, potentialfrei: graphische Darstellung der Lösungen

BS II: NFE-Ansatz

Caroline Röhr

1-dimensionaler Fall

Teilchen im Kasten. potentialfrei (Wdh.)

Teilchen im Kasten, mit periodischem Potential der Rümpfe

2-dimensionaler Fall

Allgemeines

Beispiel: Squarium

Reziprokes Gitter. k-Flächen/-Raum, BZ

3-dimensionaler Fall. einfache Metalle

Allgemeines

Bandstrukturen

FERMI-Flächen

Zustandsdichten

Zusammenfassung

****** n=2 n=3 n=7

Eigenfunktionen

- stehende Wellen mit Quantenzahl n = Zahl der 'Bäuche', n - 1 Knoten
- s.a.: Applet qm1d (Falstad) bzw. lokal

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Vergleich der Lösung

$$\psi_n = e^{ik_n x} = \cos k_n x + i \sin k_n x$$

mit der allgemeinen Wellengleichung

$$y = \cos\frac{2\pi}{\lambda}x$$

▶ zeigt, dass
$$\mapsto k_n = \frac{2\pi}{\lambda_n}$$

► k ...

- normierte Quantenzahl
- 'Knotenzähler'
- $\blacktriangleright k_n \propto \frac{1}{\lambda_n}$ (Wellenzahl)
- Einheit einer reziproken Länge
- ▶ k = 1D Vektor im Reziproken
- ▶ $k \propto$ Impuls der Elektronen ($p = \hbar k$), da

$$E = \underbrace{\frac{p^2}{2m_e}}_{\text{hinein}} = \underbrace{\frac{\hbar^2 k^2}{2m_e}}_{\text{Ergebnis}}$$

BS II: NFE-Ansatz

Caroline Röhr

1-dimensionaler Fall

Teilchen im Kasten, potentialfrei (Wdh.)

Teilchen im Kasten, mit periodischem Potential der Rümpfe

2-dimensionaler Fall

Allgemeines

Beispiel: Squarium

Reziprokes Gitter, k-Flächen/-Raum, BZ

3-dimensionaler Fall, einfache Metalle

Allgemeines

Bandstrukturen

FERMI-Flächen

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Zustandsdichten

Energie-Eigenwerte (rechts)

BS II: NFE-Ansatz

1-dimensionaler Fall

Teilchen im Kasten, potentialfrei (Wdh.)

Teilchen im Kasten, mit periodischem Potential der Rümpfe

2-dimensionaler Fall

Allgemeines

Beispiel: Squarium

Reziprokes Gitter, k-Flächen/-Raum, BZ

3-dimensionaler Fall, einfache Metalle

Allgemeines

Bandstrukturen

FERMI-Flächen

Zustandsdichten

Zusammenfassung

E-Eigenwerte (rechts)

- ▶ Plot: $E \to k = \text{Bandstruktur}$ (hier $E \propto k^2$)
- Zustandsdichte (DOS) = Zahl der Niveaus im E-Intervall Ableitung f. 3D
- ▶ Besetzung nach PAULI-Prinzip \mapsto maximale Energie = FERMI-Energie E_F
- $\blacktriangleright \mapsto k_{max} = k_F = \text{Fermi-Punkt}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

E_F und k_F

- \blacktriangleright FERMI-Energie E_F : maximale Energie der Elektronen
- FERMI-Punkt k_F : maximales k = Impuls der Valenzelektronen

typische Werte für E_F bei k_F (für Metalle)

Metall	e^- -Konzentration	E_F	k	λ
	$[cm^{-3}]$	[eV]	$[m^{-1}]$	[m]
Na	$2.65 \cdot 10^{22}$	3.23	$0.92\cdot10^{10}$	$6.83 \cdot 10^{-10}$
Cu	$8.45 \cdot 10^{22}$	7.00	$1.36 \cdot 10^{10}$	$4.63 \cdot 10^{-10}$
Ca	$4.60 \cdot 10^{22}$	4.68	$1.11 \cdot 10^{10}$	$6.97 \cdot 10^{-10}$
Al	$18.06 \cdot 10^{22}$	11.63	$1.75 \cdot 10^{10}$	$3.59 \cdot 10^{-10}$
Sn	$14.48 \cdot 10^{22}$	10.03	$1.62 \cdot 10^{10}$	$3.88 \cdot 10^{-10}$

 \triangleright E_F : 1.5 bis 15 eV

- $\blacktriangleright~v\approx 1~\%$ der Lichtgeschwindigkeit c
- \blacktriangleright λ (de-Broglie-Wellenlänge) \approx 100 pm \approx Atomabstände
- \blacktriangleright \mapsto Wechselwirkung mit Kern/Rumpf-Potentialen

BS II: NFE-Ansatz

Caroline Röhr

1-dimensionaler Fall

Teilchen im Kasten, potentialfrei (Wdh.)

Teilchen im Kasten, mit periodischem Potential der Rümpfe

2-dimensionaler Fall

Allgemeines

Beispiel: Squarium

Reziprokes Gitter, k-Flächen/-Raum, BZ

3-dimensionaler Fall, einfache Metalle

Allgemeines Bandstrukturen FERMI-Flächen

 ${\it Zustandsdichten}$

Zusammenfassung

Louis-Victor Pierre Raymond DE BROGLIE (1892-1987)

Feilchen im Kasten, potentialfrei (Wdh.)

Teilchen im Kasten, mit periodischem Potential der Rümpfe

- 2 -dimensionaler Fall
 - Allgemeines Beispiel: Squarium Reziprokes Gitter, *k*-Flächen/-Raum, BZ
- 3-dimensionaler Fall, einfache Metalle Allgemeines Bandstrukturen FERMI-Flächen Zustandsdichten

4 Zusammenfassung

BS II: NFE-Ansatz

Caroline Röhr

1-dimensionaler Fall

Teilchen im Kasten, potentialfrei (Wdh.)

Teilchen im Kasten, mit periodischem Potential der Rümpfe

2-dimensionaler Fall

Allgemeines

Beispiel: Squarium

Reziprokes Gitter, k-Flächen/-Raum, BZ

3-dimensionaler Fall, einfache Metalle

Allgemeines

Bandstrukturen

FERMI-Flächen

Zustandsdichten

Zusammenfassung

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Teilchen im Kasten: mit periodischem Potential der Rümpfe

- ▶ $\lambda \approx$ Gitterabstände \mapsto WW mit Kern/Rumpf-Potentialen
- qualitativ: für $\lambda = 2a$ d.h. wegen $k = \frac{2\pi}{\lambda}$ bei $k = \frac{\pi}{a}$
 - \mapsto 'günstige' und 'ungünstige' COULOMB-WW \mapsto Bandlücke (Bsp: n=7)

- $\blacktriangleright \ \psi^2 \propto$ Aufenthaltswahrscheinlichkeit für e^-
- ▶ bei $\lambda = 2a$ zwei Fälle unterscheidbar:
 - 1) <u>unten:</u> günstig (COULOMB, Kompensation der Ladung der Kerne durch e^-) $\mapsto E$ günstiger als im potentialfreien Fall
 - 2 <u>oben:</u> ungünstig $\mapsto E$ höher als im potentialfreien Fall

BS II: NFE-Ansatz

Caroline Röhr

1-dimensionaler Fall

Teilchen im Kasten, potentialfrei (Wdh.)

Teilchen im Kasten, mit periodischem Potential der Rümpfe

2-dimensionaler Fall

Allgemeines

Beispiel: Squarium

Reziprokes Gitter, k-Flächen/-Raum, BZ

3-dimensionaler Fall, einfache Metalle

Allgemeines

Bandstrukturen

FERMI-Flächen

Zustandsdichten

Teilchen im Kasten: mit periodischem Potential der Rümpfe

Bandstruktur (Plot $E \rightarrow k$)

- \blacktriangleright gestrichelt = potentialfreie Parabel
- ▶ durch ⊕ Potentiale: Energie/Band-Lücken bei $\frac{\pi}{a}, \frac{2\pi}{a}, \dots$

Caroline Röhr

1-dimensionaler Fall

Teilchen im Kasten, potentialfrei (Wdh.)

Teilchen im Kasten, mit periodischem Potential der Rümpfe

2-dimensionaler Fall

Allgemeines

Beispiel: Squarium

Reziprokes Gitter, k-Flächen/-Raum, BZ

3-dimensionaler Fall, einfache Metalle

Allgemeines

Bandstrukturen

FERMI-Flächen

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Zustandsdichten

Teilchen im Kasten: mit periodischem Potential der Rümpfe

- Bandstruktur (Plot $E \to k$)
 - \blacktriangleright gestrichelt = potentialfreie Parabel
 - ▶ durch ⊕ Potentiale: Energie/Band-Lücken bei $\frac{\pi}{a}, \frac{2\pi}{a}, \dots$
- ► Zahl der e^- bei $k = \frac{\pi}{a}$??
 - ▶ aus $k = \frac{\pi n}{L}$ folgt für die Zahl der Zustände bei k: $n = \frac{kL}{\pi}$
 - ▶ am reziproken Ort $k = \frac{\pi}{a}$ sind damit $n = \frac{\frac{\pi}{a}L}{\pi} = \frac{L}{a}$ Zustände besetzt
 - ▶ bei 1 Atom/Gitterparameter a entspricht n damit der Gesamtzahl der Atome N (pro Atom 1 e^{-} -Paar)
- mit konkretem Beispiel von oben
 - ▶ z.B. a = 100 pm, L = 700 pm \mapsto 'Kiste' enthält 7 Atome (1 Atom/EZ)
 - ▶ $n = 7 \mapsto \text{insgesamt } 14 \ e^- \mapsto 2e^-/\text{AO}$

Caroline Röhr

1-dimensionaler Fall

Teilchen im Kasten, potentialfrei (Wdh.)

Teilchen im Kasten, mit periodischem Potential der Rümpfe

2-dimensionaler Fall

Allgemeines

Beispiel: Squarium

Reziprokes Gitter, k-Flächen/-Raum, BZ

3-dimensionaler Fall, einfache Metalle

Allgemeines

Bandstrukturen

FERMI-Flächen

Zustandsdichten

Darstellungen der Bandstruktur

s.a. Applet 1D-Kristall (Falstad) bzw. lokal

erweitertes Zonenschema

- \blacktriangleright direkte Auftragung von E gegen k
- reduziertes Schema
 - in kleinste Einheit im reziproken Raum zurückgefaltet
 - \mapsto 1. BRILLOUIN-Zone (BZ)
 - = WIGNER-SEITZ-Zelle (s.u.)
 - ▶ jedes Band = $2 e^{-}/EZ$

periodisches Zonenschema

 $(1889 - 1969)^1$

- aneinandergesetzte reduzierte Schemata ►
- nützlich für elektronische Transporteigenschaften (s. V)

BS II: NFE-Ansatz

Caroline Röhr

1-dimensionaler Fall

Teilchen im Kasten. potentialfrei (Wdh.)

Teilchen im Kasten, mit periodischem Potential der Rümpfe

2-dimensionaler Fall

Allgemeines

Beispiel: Squarium

Reziprokes Gitter. k-Flächen/-Raum, BZ

3-dimensionaler Fall. einfache Metalle

Allgemeines

Bandstrukturen

FERMI-Flächen

Zustandsdichten

Zusammenfassung

¹Physics History Network, https://history.aip.org

Faltung, reziproke Gitterpunkte, 1. BRILLOUIN-Zone

▶ reziproke Gitterpunkte

- ▶ bei $k = \frac{2\pi}{a}$ ist $\lambda = a \mapsto$ reziproker Gitterpunkt
- \blacktriangleright allgemein: an rezi
proken Gitterpunkten hat ψ die gleiche Translationsperio
de wie das reale Gitter ($\lambda=na$)
- ▶ 1. BZ = WIGNER-SEITZ-Zelle
 - ▶ 'gefaltet' wird bei $k = \frac{\pi}{a}$ ($\lambda = \frac{a}{2}$, 2 e⁻/Atom)
 - \blacktriangleright allgemein an der Mittelsenkrechten zwischen Γ und einem reziproken Gitterpunkt
 - ▶ \mapsto 1. BZ = WIGNER-SEITZ-Zelle des reziproken Gitters (s.u. für 2D und 3D)

BS II: NFE-Ansatz

Caroline Röhr

1-dimensionaler Fall

Teilchen im Kasten, potentialfrei (Wdh.)

Teilchen im Kasten, mit periodischem Potential der Rümpfe

2-dimensionaler Fall

Allgemeines

Beispiel: Squarium

Reziprokes Gitter, k-Flächen/-Raum, BZ

3-dimensionaler Fall, einfache Metalle

Allgemeines

Bandstrukturen

FERMI-Flächen

Zustandsdichten

Mathematisches zum 'Zurückfalten' (in 1D)

- ▶ Definition eines reziproken Gitters mit Gittervektoren \vec{K} (1D: reziproke Linie mit Gitterpunkten alle $\frac{2\pi}{a}$)
- ▶ jeder beliebige reziproke Vektor \vec{g} wird ausgedrückt als:

 $\vec{g} = \vec{K} + \vec{k}^n$

- ▶ \vec{k} -Raum ist zentrosymmetrisch (1D: nur Betrag entscheidend)
- ▶ alle \vec{k}^n in der WIGNER-SEITZ-Zelle (1. BZ) (Konstruktion: Mittelsenkrechte)

BS II: NFE-Ansatz

Caroline Röhr

1-dimensionaler Fall

Teilchen im Kasten, potentialfrei (Wdh.)

Teilchen im Kasten, mit periodischem Potential der Rümpfe

2-dimensionaler Fall

Allgemeines

Beispiel: Squarium

Reziprokes Gitter, k-Flächen/-Raum, BZ

3-dimensionaler Fall, einfache Metalle

Allgemeines

Bandstrukturen

FERMI-Flächen

Zustandsdichten

▶ LCAO-Lösung \uparrow (nach HÜCKEL), nur für 2 e^- /Atom (LC nur von 1s-AO)

 $E_k = \alpha + 2\beta \cos ka$

▶ mit:

- ▶ α : 'Coulomb'-Integral
- $\triangleright \beta$ 'Austausch'-Integral
- a: Atomabstand

▶ d.h. $E \sim \cos k$, für $0 \le k \le +\frac{\pi}{a}$

BS II: NFE-Ansatz

Caroline Röhr

1-dimensionaler Fall

Teilchen im Kasten, potentialfrei (Wdh.)

Teilchen im Kasten, mit periodischem Potential der Rümpfe

2-dimensionaler Fall

Allgemeines

Beispiel: Squarium

Reziprokes Gitter, k-Flächen/-Raum, BZ

3-dimensionaler Fall, einfache Metalle

Allgemeines

Bandstrukturen

FERMI-Flächen

Zustandsdichten

Zusammenfassung

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへで

Teilchen im Kasten, potentialfrei (Wdh.) Teilchen im Kasten, mit periodischem Potential der Rümpfe

2 2-dimensionaler Fall

Allgemeines Beispiel: Squarium Reziprokes Gitter, k-Flächen/-Raum, BZ

3 3-dimensionaler Fall, einfache Metalle

Allgemeines Bandstrukture

FERMI-Flächen

Zustandsdichten

4 Zusammenfassung

BS II: NFE-Ansatz

Caroline Röhr

1-dimensionaler Fall

Teilchen im Kasten, potentialfrei (Wdh.)

Teilchen im Kasten, mit periodischem Potential der Rümpfe

2-dimensionaler Fall

Allgemeines

Beispiel: Squarium

Reziprokes Gitter, k-Flächen/-Raum, BZ

3-dimensionaler Fall, einfache Metalle

Allgemeines

Bandstrukturen

FERMI-Flächen

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Zustandsdichten

Teilchen im Kasten, potentialfrei (Wdh.) Teilchen im Kasten, mit periodischem Potential der Rümpfe

2 2-dimensionaler Fall

Allgemeines Beispiel: Squarium Reziprokes Gitter, k-Flächen/-Raum, B2

3-dimensionaler Fall, einfache Metalle Allgemeines Bandstrukturen FERMI-Flächen Zustandsdichten

4 Zusammenfassung

BS II: NFE-Ansatz

Caroline Röhr

1-dimensionaler Fall

Teilchen im Kasten, potentialfrei (Wdh.)

Teilchen im Kasten, mit periodischem Potential der Rümpfe

2-dimensionaler Fall

Allgemeines

Beispiel: Squarium

Reziprokes Gitter, k-Flächen/-Raum, BZ

3-dimensionaler Fall, einfache Metalle

Allgemeines

Bandstrukturen

FERMI-Flächen

Zustandsdichten

Zusammenfassung

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- E = f(kx und ky), d.h. 2 Quantenzahlen
 k = g spannt reziproke Fläche auf
 E = f(k) noch in 3D darstellbar
- ▶ maximales E im k-Raum: FERMI-Linie (potentialfrei: Kreis)
- $\blacktriangleright~\vec{k}$ ist Vektor \mapsto Konstruktion rezi
proker Gitter
- ▶ 'Falten' analog 1D-Fall: $\vec{g} = \vec{K} + \vec{k}^n$ (n: Bandindex)

Applet stehende Wellen in 2D

Caroline Röhr

1-dimensionaler Fall

Teilchen im Kasten, potentialfrei (Wdh.)

Teilchen im Kasten, mit periodischem Potential der Rümpfe

2-dimensionaler Fall

Allgemeines

Beispiel: Squarium

Reziprokes Gitter, k-Flächen/-Raum, BZ

3-dimensionaler Fall, einfache Metalle

Allgemeines

Bandstrukturen

FERMI-Flächen

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Zustandsdichten

Teilchen im Kasten, potentialfrei (Wdh.) Teilchen im Kasten, mit periodischem Potential der Rümpfe

2 2-dimensionaler Fall

Allgemeines Beispiel: Squarium Reziprokes Gitter, *k*-Flächen/-Raum, BZ

3-dimensionaler Fall, einfache Metalle Allgemeines Bandstrukturen FERMI-Flächen Zustandsdichten

4 Zusammenfassung

BS II: NFE-Ansatz

Caroline Röhr

1-dimensionaler Fall

Teilchen im Kasten, potentialfrei (Wdh.)

Teilchen im Kasten, mit periodischem Potential der Rümpfe

2-dimensionaler Fall

Allgemeines

Beispiel: Squarium

Reziprokes Gitter, k-Flächen/-Raum, BZ

3-dimensionaler Fall, einfache Metalle

Allgemeines

Bandstrukturen

FERMI-Flächen

Zustandsdichten

Zusammenfassung

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Squarium: Quadratische Anordnung von Kernen

Applet 2D-Kristall und ein C-Zeiten-Erklärfilmchen

・ロト < 団ト < 三ト < 三ト < 回ト < 回

BS II: NFE-Ansatz

Caroline Röhr

BS II: NFE-Ansatz

Caroline Röhr

1-dimensionaler Fall

Teilchen im Kasten, potentialfrei (Wdh.)

Teilchen im Kasten, mit periodischem Potential der Rümpfe

2-dimensionaler Fall

Allgemeines

Beispiel: Squarium

Reziprokes Gitter, k-Flächen/-Raum, BZ

3-dimensionaler Fall, einfache Metalle

Allgemeines

Bandstrukturen

FERMI-Flächen

Zustandsdichten

Zusammenfassung

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Teilchen im Kasten, potentialfrei (Wdh.) Teilchen im Kasten, mit periodischem Potential der Rümpfe

2 2-dimensionaler Fall

Allgemeines Beispiel: Squarium Reziprokes Gitter, k-Flächen/-Raum, BZ

3 3-dimensionaler Fall, einfache Metalle

Allgemeines

Bandstrukturen

FERMI-Flächen

Zustandsdichten

4 Zusammenfassung

BS II: NFE-Ansatz

Caroline Röhr

1-dimensionaler Fall

Teilchen im Kasten, potentialfrei (Wdh.)

Teilchen im Kasten, mit periodischem Potential der Rümpfe

2-dimensionaler Fall

Allgemeines

Beispiel: Squarium

Reziprokes Gitter, k-Flächen/-Raum, BZ

3-dimensionaler Fall, einfache Metalle

Allgemeines

Bandstrukturen

FERMI-Flächen

Zustandsdichten

Zusammenfassung

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Definition(en) reziprokes Gitter

- Zu jedem realen (BRAVAIS-)Gitter mit den Gittervektoren
 - ▶ $\vec{R} = u\vec{a} + v\vec{b} + w\vec{c}$ (*u*, *v*, *w*: ganzzahlig)
- \blacktriangleright \mapsto reziprokes Gitter mit Gittervektoren:
 - ▶ $\vec{K} = h\vec{a^*} + k\vec{b^*} + l\vec{c^*}$ (h, k, l: ganzzahlig)
- so dass gilt (! Definition 1 !)
 - $e^{i\vec{K}\vec{R}} = 1$ bzw. $\vec{K}\vec{R} = 2\pi n$
- ▶ ist erfüllt für (! Definition 2 !)
 - $\vec{a}\vec{a^*} = 1$ usw. und $\vec{a}\vec{b^*} = 0$ usw.
 - ▶ d.h. $\vec{a^*} \perp \vec{b}$ und \vec{c} usw.
 - bzw. exakt: $\vec{a^*} = \frac{2\pi}{V_{EZ}} (\vec{b} \times \vec{c})$ usw.
- ▶ Vorteil: Jede ebene Welle $\psi_{\vec{K}}(\vec{r}) = \psi_0 e^{i\vec{K}\vec{r}}$ ist gitterperiodisch, denn
 - $\begin{array}{l} \blacktriangleright \quad \psi_{\vec{K}}(\vec{r}) = \psi_{\vec{K}}(\vec{r} + \vec{R}) \; (\equiv \text{Periodizität}) \\ \\ \blacktriangleright \quad \psi_{\vec{K}}(\vec{r}) = \psi_0 e^{i\vec{K}\cdot\vec{r}} = \psi_0 e^{i\vec{K}\cdot(\vec{r} + \vec{R})} = \psi_0 e^{i\vec{K}\cdot\vec{r}} \underbrace{e^{i\vec{K}\cdot\vec{R}}}_{} \end{array}$

BS II: NFE-Ansatz

Caroline Röhr

1-dimensionaler Fall

Teilchen im Kasten, potentialfrei (Wdh.)

Teilchen im Kasten, mit periodischem Potential der Rümpfe

2-dimensionaler Fall

Allgemeines

Beispiel: Squarium

Reziprokes Gitter, k-Flächen/-Raum, BZ

3-dimensionaler Fall, einfache Metalle

Allgemeines

Bandstrukturen

FERMI-Flächen

Zustandsdichten

Zusammenfassung

-1!

weitere Eigenschaften des reziproken Gitters

- punktsymmetrisch (Laueklasse)
- Ursprung im Zentrum des reziproken Gitters (Γ-Punkt)
- 'Elementarzelle': WIGNER-SEITZ-Zelle (Polyeder mit den Mittelsenkrechten zwischen dem Ursprung und allen benachbarten Gitterpunkten als Flächen)
- enthält genau einen reziproken Gitterpunkt
- ▶ $\equiv 1$. BRILLOUIN-Zone
- für die Beugung:
 - ▶ der reziproke Gittervektor K_{hkl} steht senkrecht auf der Netzebenenschar $\{hkl\}$
 - ▶ das Skalarprodukt $\vec{K}\vec{r} = hx + ky + lz$ beschreibt den Abstand des Punktes \vec{x} von der Netzebenenschar \vec{h} (Phasendifferenz).

Caroline Röhr

1-dimensionaler Fall

Teilchen im Kasten, potentialfrei (Wdh.)

Teilchen im Kasten, mit periodischem Potential der Rümpfe

2-dimensionaler Fall

Allgemeines

Beispiel: Squarium

Reziprokes Gitter, k-Flächen/-Raum, BZ

3-dimensionaler Fall, einfache Metalle Allgemeines

Bandstrukturen

FERMI-Flächen

Zustandsdichten

Konstruktion der 1. BZ in 2D, Bandindex

- $\blacktriangleright~\vec{g}$ spannen gesamte reziproke Fläche auf
- ▶ maximales E im k-Raum: FERMI-Linie (potentialfrei: Kreis)
- ▶ 'Falten' analog 1D-Fall: $\vec{g} = \vec{K} + \vec{k}^n$ (n: Bandindex = MILLER-Indizes)
- ▶ $\vec{k^n}$ liegen in der WIGNER-SEITZ-Zelle (1. BZ)
- ▶ 1. BZ: begrenzt durch Mittelsenkrechte zwischen Γ und nächsten \vec{K}

▶ ebene Wellen mit $\vec{g} = \vec{K}$ (d.h. $\vec{k}^n = \vec{0}$) haben die Periodizität des Gitters

BS II: NFE-Ansatz

Caroline Röhr

1-dimensionaler Fall

Teilchen im Kasten, potentialfrei (Wdh.)

Teilchen im Kasten, mit periodischem Potential der Rümpfe

2-dimensionaler Fall

Allgemeines

Beispiel: Squarium

Reziprokes Gitter, k-Flächen/-Raum, BZ

3-dimensionaler Fall, einfache Metalle

Allgemeines

Bandstrukturen

FERMI-Flächen

Zustandsdichten

Zusammenfassung

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへで

Reziprokes Gitter, BZ, etc.: Übung am 2D-Beispiel Graphit

 Skizzieren Sie die Elementarzelle und die Struktur einer Schicht von Graphit (alles nur 2-dimensional!).

(Tipp: Auf einem Karopapier geht ein hexagonales Muster gut, wenn man eine Kante 5 Kästchen horizontal zeichnet und die zweite Kante 3x + 4y Kästchen gedreht ansetzt.)

- 2 Zu welcher Flächengruppe gehört die Struktur? Welche Punktgruppe und welche LAUE-Klasse liegen vor?
- **3** Konstruieren Sie das reziproke Gitter (am besten: a^* doppelt so lang wie a etc.).
- 4 Konstruieren Sie dazu die 1. und die 2. BRILLOUIN-Zone.
- **5** Welche 2D Punktgruppe hat das reziproke Gitter?
- 6 Zeichnen Sie den irreduziblen Teil der BZ ein.
- **7** Zeichnen Sie die speziellen Punkte M $(\frac{1}{2}, 0)$ und K $(\frac{1}{2}, \frac{1}{2})$ ein.
- **§ für IV**: Wie erklärt sich hieraus die energetische Lage der beiden C- p_z -Bänder bei M und der Bandverlauf von Γ nach M.

BS II: NFE-Ansatz

Caroline Röhr

1-dimensionaler Fall

Teilchen im Kasten, potentialfrei (Wdh.)

Teilchen im Kasten, mit periodischem Potential der Rümpfe

2-dimensionaler Fall

Allgemeines

Beispiel: Squarium

Reziprokes Gitter, k-Flächen/-Raum, BZ

3-dimensionaler Fall, einfache Metalle

Allgemeines

Bandstrukturen

FERMI-Flächen

Zustandsdichten

Übung: 2D-Beispiel Graphit

	1-dimensionaler Fall
	Teilchen im Kasten.
	potentialfrei (Wdh.)
	Teilchen im Kasten, mit
	periodischem Potential der
	Rümpfe
	2-dimensionaler Fall
	2 (111010101010101 1 011
	Allgemeines
	Beispiel: Squarium
	Reziprokes Gitter,
	k-Flächen/-Raum, BZ
	2 dimensionales Fall
	sinfacho Motallo
	cillactic metalle
	Allgemeines
	Bandstrukturen
	FERMI-Flächen
	Zustandsdichten
	Zusammenfassung
ション しょうきょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう	

BS II: NFE-Ansatz Caroline Röhr

Bedeutung von $\vec{k}\vec{r}$ als Phase bei Streuprozessen

- Elektronische Strukturen: e^- (E: [eV])
 - LCAO (BLOCH-Summen): $\psi = \sum_{j} \phi_{j} e^{i\vec{k}n\vec{a}}$
 - mit: $\vec{k} = \frac{2\pi}{\vec{a}}$
 - ▶ $\vec{k} = 0$: MO-Schema (M:¹ ΔE aus UV/vis- oder UPS/XPS-Spektroskopie)
 - ▶ \vec{k} beliebig: Bandstruktur $E(\vec{k})$ (M: ΔE mittels ARPES etc.)
- Gitterdynamik: Phononen (E: [meV])
 - ▶ Elemente der dynamischen Matrix: $D_{kk'} = \frac{1}{\sqrt{m_k m_{k'}}} \sum_{l'} V_{kl,k'l'} e^{i \vec{q} \cdot \vec{r}_{l-l'}}$
 - ▶ mit: \vec{q} : Wellenvektor
 - ▶ $\vec{q} = 0$: Schwingungsenergien (M: ΔE : IR/Raman-Spektroskopie)
 - ▶ \vec{q} beliebig: Phononendispersion $E(\vec{q})$ (M: inelastische *n*-Streuung)
- Beugung: Photonen (Röntgen); e^- (E: [keV]); n
 - ▶ positive Interferenz (Reflex) \mapsto Streuvektor \vec{s} = reziproker Gittervektor \vec{K}
 - M: Intensitätsgewichtetes reziprokes Gitter

•
$$F_{\vec{h}} = \sum_{j=1}^{N} f_j e^{2\pi i (\vec{h} \cdot \vec{x_j})} = \int \rho_{\vec{x}} e^{2\pi i \vec{h} \cdot \vec{x}} dV$$

BS II: NFE-Ansatz

Caroline Röhr

1-dimensionaler Fall

Teilchen im Kasten, potentialfrei (Wdh.)

Teilchen im Kasten, mit periodischem Potential der Rümpfe

2-dimensionaler Fall

Allgemeines

Beispiel: Squarium

Reziprokes Gitter, k-Flächen/-Raum, BZ

3-dimensionaler Fall, einfache Metalle

Allgemeines

Bandstrukturen

FERMI-Flächen

Zustandsdichten

¹ Methode zur experimentellen Bestimmung/Messung

Reziprokes Gitter und Eigenwertprobleme mit/ohne Translation

Caroline Röhr

1-dimensionaler Fall

Teilchen im Kasten, potentialfrei (Wdh.)

Teilchen im Kasten, mit periodischem Potential der Rümpfe

2-dimensionaler Fall

Allgemeines

Beispiel: Squarium

Reziprokes Gitter, k-Flächen/-Raum, BZ

3-dimensionaler Fall, einfache Metalle

Allgemeines

Bandstrukturen

FERMI-Flächen

Zustandsdichten

Zusammenfassung

|▲□▶ ▲圖▶ ▲国▶ ▲国▶ | 国|||のへの

Teilchen im Kasten, potentialfrei (Wdh.) Teilchen im Kasten, mit periodischem Potential der Rümpfe

2-dimensionaler Fall

Allgemeines Beispiel: Squarium Reziprokes Gitter, k-Flächen/-Raum, BZ

3 3-dimensionaler Fall, einfache Metalle

Allgemeines Bandstrukturen FERMI-Flächen Zustandsdichten

4 Zusammenfassung

BS II: NFE-Ansatz

Caroline Röhr

1-dimensionaler Fall

Teilchen im Kasten, potentialfrei (Wdh.)

Teilchen im Kasten, mit periodischem Potential der Rümpfe

2-dimensionaler Fall

Allgemeines

Beispiel: Squarium

Reziprokes Gitter, k-Flächen/-Raum, BZ

3-dimensionaler Fall, einfache Metalle

Allgemeines

Bandstrukturen

FERMI-Flächen

Zustandsdichten

Zusammenfassung

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Teilchen im Kasten, potentialfrei (Wdh.) Teilchen im Kasten, mit periodischem Potential der Rümpfe

2-dimensionaler Fall

Allgemeines Beispiel: Squarium Reziprokes Gitter, k-Flächen/-Raum, BZ

3 3-dimensionaler Fall, einfache Metalle

Allgemeines

Bandstrukturen

Fermi-Flächen

Zustandsdichten

4 Zusammenfassung

BS II: NFE-Ansatz

Caroline Röhr

1-dimensionaler Fall

Teilchen im Kasten, potentialfrei (Wdh.)

Teilchen im Kasten, mit periodischem Potential der Rümpfe

2-dimensionaler Fall

Allgemeines

Beispiel: Squarium

Reziprokes Gitter, k-Flächen/-Raum, BZ

3-dimensionaler Fall, einfache Metalle

Allgemeines

Bandstrukturen

FERMI-Flächen

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Zustandsdichten

Allgemeines

- ▶ \vec{k} : 3 Komponenten \mapsto Vektoren im k-Raum mit Endpunkten $k_{x,y,z}$
- \blacktriangleright Plot $E \rightarrow \vec{g}$ würde 4D erfordern \mapsto nur 'Spaghetti'-Plots möglich
- ▶ k_F : FERMI-Fläche (Potentialfrei: Kugel)
- ▶ Konstruktion der 1. BZ analog 2D-Fall
- alle BZ parkettieren den reziproken Raum
- ▶ Benennung spezieller Punkte und Pfade \mapsto Bilbao Crystallograhic Server
- !! eigene Benennungen im Umlauf
- ▶ Beispiel: 1. BZ des f.c.c.-Gitters

BS II: NFE-Ansatz

Caroline Röhr

1-dimensionaler Fall

Teilchen im Kasten, potentialfrei (Wdh.)

Teilchen im Kasten, mit periodischem Potential der Rümpfe

2-dimensionaler Fall

Allgemeines

Beispiel: Squarium

Reziprokes Gitter, k-Flächen/-Raum, BZ

3-dimensionaler Fall, einfache Metalle

Allgemeines

Bandstrukturen

FERMI-Flächen

 ${\it Zustandsdichten}$

Teilchen im Kasten, potentialfrei (Wdh.) Teilchen im Kasten, mit periodischem Potential der Rümpfe

2-dimensionaler Fall

Allgemeines Beispiel: Squarium Reziprokes Gitter, k-Flächen/-Raum, BZ

3 3-dimensionaler Fall, einfache Metalle

Allgemeines

Bandstrukturen

FERMI-Flächen

Zustandsdichten

4 Zusammenfassung

BS II: NFE-Ansatz

Caroline Röhr

1-dimensionaler Fall

Teilchen im Kasten, potentialfrei (Wdh.)

Teilchen im Kasten, mit periodischem Potential der Rümpfe

2-dimensionaler Fall

Allgemeines

Beispiel: Squarium

Reziprokes Gitter, k-Flächen/-Raum, BZ

3-dimensionaler Fall, einfache Metalle

Allgemeines

Bandstrukturen

FERMI-Flächen

Zustandsdichten

Zusammenfassung

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

BRILLOUIN-Zonen der drei Basis-Metallstrukturen

Caroline Röhr

1-dimensionaler Fall

Teilchen im Kasten, potentialfrei (Wdh.)

Teilchen im Kasten, mit periodischem Potential der Rümpfe

2-dimensionaler Fall

Allgemeines

Beispiel: Squarium

Reziprokes Gitter, k-Flächen/-Raum, BZ

3-dimensionaler Fall, einfache Metalle

Allgemeines

Bandstrukturen

FERMI-Flächen

 ${\it Zustandsdichten}$

Zusammenfassung

	b.c.c.	f.c.c.	h.c.p.
Name	W-Typ, A2	Cu-Typ, A1	Mg-Typ, A3
ΕZ			
1. BZ	Rhombendodekaeder	gekapptes Oktaeder	hexagonales Prisma

alle BZ parkettieren den (reziproken) Raum

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへで

Bandstrukturen für Metalle der drei Basis-Strukturen

Caroline Röhr

1-dimensionaler Fall

Teilchen im Kasten, potentialfrei (Wdh.)

Teilchen im Kasten, mit periodischem Potential der Rümpfe

2-dimensionaler Fall

Allgemeines

Beispiel: Squarium

Reziprokes Gitter, k-Flächen/-Raum, BZ

3-dimensionaler Fall, einfache Metalle

Allgemeines

Bandstrukturen

FERMI-Flächen

 ${\it Zustandsdichten}$

f.c.c.: Vergleich von Cu (1 v.e.) und Al (3 v.e.)

BRILLOUIN-Zone

Kupfer: 1 v.e.

Aluminium: 3 v.e.

Cu (vrml)

Al, 2. Band (vrml)

Al, 3. Band (vrml)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

BS II: NFE-Ansatz

Caroline Röhr

1-dimensionaler Fall

Teilchen im Kasten, potentialfrei (Wdh.)

Teilchen im Kasten, mit periodischem Potential der Rümpfe

2-dimensionaler Fall

Allgemeines

Beispiel: Squarium

Reziprokes Gitter, k-Flächen/-Raum, BZ

3-dimensionaler Fall, einfache Metalle

Allgemeines

Bandstrukturen

FERMI-Flächen

 ${\it Zustandsdichten}$

Zusammenfassung

FERMI-Flächen aller Metalle: www.phys.ufl.edu/fermisurface/

Teilchen im Kasten, potentialfrei (Wdh.) Teilchen im Kasten, mit periodischem Potential der Rümpfe

2-dimensionaler Fall

Allgemeines Beispiel: Squarium Reziprokes Gitter, k-Flächen/-Raum, BZ

3 3-dimensionaler Fall, einfache Metalle

Allgemeines Bandstrukture

FERMI-Flächen

Zustandsdichten

4 Zusammenfassung

BS II: NFE-Ansatz

Caroline Röhr

1-dimensionaler Fall

Teilchen im Kasten, potentialfrei (Wdh.)

Teilchen im Kasten, mit periodischem Potential der Rümpfe

2-dimensionaler Fall

Allgemeines

Beispiel: Squarium

Reziprokes Gitter, k-Flächen/-Raum, BZ

3-dimensionaler Fall, einfache Metalle

Allgemeines

Bandstrukturen

FERMI-Flächen

Zustandsdichten

Zusammenfassung

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

FERMI-Flächen für Metalle der drei Basis-Strukturen

Caroline Röhr

1-dimensionaler Fall

Teilchen im Kasten, potentialfrei (Wdh.)

Teilchen im Kasten, mit periodischem Potential der Rümpfe

2-dimensionaler Fall

Allgemeines

Beispiel: Squarium

Reziprokes Gitter, k-Flächen/-Raum, BZ

3-dimensionaler Fall, einfache Metalle

Allgemeines

Bandstrukturen

FERMI-Flächen

Zustandsdichten

Zusammenfassung

	b.c.c.	f.c.c.	h.c.p.
Name	W-Typ, A2	Cu-Typ, A1	Mg-Typ, A3
Beispiel	Na	Cu	Mg
Band- struktur	Energia (o)		
Fermi- Fläche			gelb/violett 2./3. Band
v.e.	1 v.e./EZ	1 v.e./EZ	4 v.e./EZ

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Teilchen im Kasten, potentialfrei (Wdh.) Teilchen im Kasten, mit periodischem Potential der Rümpfe

2-dimensionaler Fall

Allgemeines Beispiel: Squarium Reziprokes Gitter, k-Flächen/-Raum, BZ

3 3-dimensionaler Fall, einfache Metalle

Allgemeines Bandstrukturen FERMI-Flächen

Zustandsdichten

4 Zusammenfassung

BS II: NFE-Ansatz

Caroline Röhr

1-dimensionaler Fall

Teilchen im Kasten, potentialfrei (Wdh.)

Teilchen im Kasten, mit periodischem Potential der Rümpfe

2-dimensionaler Fall

Allgemeines

Beispiel: Squarium

Reziprokes Gitter, k-Flächen/-Raum, BZ

3-dimensionaler Fall, einfache Metalle

Allgemeines

Bandstrukturen

FERMI-Flächen

Zustandsdichten

Zusammenfassung

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Zustandsdichten (DOS) für Teilchen im 3D-Kasten (potentialfrei, ungefaltet, $\vec{k}=\vec{g})$

- ▶ analog 1D-Fall $(k_n = \frac{2\pi}{L}n) \mapsto 3D$: zu jedem $\vec{k}_{x,y,z}$ gehört ein reziprokes Volumeninkrement $\Delta V^* = (\frac{2\pi}{L})^3$
- ► Gesamtzahl erlaubter Niveaus (inkl. Spin) in einer Kugel mit Radius k und Volumen $V^* = \frac{4}{3}\pi k^3$:

$$N = 2\frac{V^*}{\Delta V^*} = 2\frac{\frac{4}{3}\pi k^3}{(\frac{2\pi}{L})^3} = \frac{V}{3\pi^2}k^3 \text{ und damit } k = \left(\frac{3\pi^2 N}{V}\right)^{1/3}$$

• Einsetzen in
$$E = \frac{\hbar^2}{2m_e}k^2$$
 ergibt

$$E = \frac{\hbar^2}{2m_e} \left(\frac{3\pi^2 N}{V}\right)^{2/3} \text{ und damit } N = \frac{V}{3\pi^2} \left(\frac{2m_e E}{\hbar^2}\right)^{3/2}$$

- \blacktriangleright die Gesamtzahl N der Zustände bis zur Energie E.
- Für die Zustandsdichte DOS (D(E)) folgt daraus:

$$D(E) = \frac{dN}{dE} = \frac{V}{2\pi^2} \left(\frac{2m_e}{\hbar^2}\right)^{3/2} E^{1/2} \text{ bzw. allgemein: } D(E) \propto \sqrt{E}$$

BS II: NFE-Ansatz

Caroline Röhr

1-dimensionaler Fall

Teilchen im Kasten, potentialfrei (Wdh.)

Teilchen im Kasten, mit periodischem Potential der Rümpfe

2-dimensionaler Fall

Allgemeines

Beispiel: Squarium

Reziprokes Gitter, k-Flächen/-Raum, BZ

3-dimensionaler Fall, einfache Metalle

Allgemeines

Bandstrukturen

FERMI-Flächen

Zustandsdichten

Zusammenfassung

・ロト・日本・日本・日本・日本・日本

DOS für Metalle der drei Basis-Strukturen

	b.c.c.	f.c.c.	h.c.p.
Name	W-Typ, A2	Cu-Typ, A1	Mg-Typ, A3
Beispiel	Na	Al	Mg
Fermi- Fläche		gelb/violett 2./3. Band	gelb/violett 2./3. Band
DOS	10 10 10 10 10 10 10 10 10 10	12 - 10 - 4 - 4 - 2 - 0 - 4 - 4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	12 10 1 4 4 4 2 0 Magnetium 12 10 1 10 1 4 4 4 2 0 Magnetium 12 10 1 10 1 10 10 10 10 10 10 10 10 10 10

BS II: NFE-Ansatz

Caroline Röhr

1-dimensionaler Fall

Teilchen im Kasten, potentialfrei (Wdh.)

Teilchen im Kasten, mit periodischem Potential der Rümpfe

2-dimensionaler Fall

Allgemeines

Beispiel: Squarium

Reziprokes Gitter, k-Flächen/-Raum, BZ

3-dimensionaler Fall, einfache Metalle

Allgemeines

Bandstrukturen

FERMI-Flächen

 ${\it Zustandsdichten}$

BS II: NFE-Ansatz

Caroline Röhr

1-dimensionaler Fall

Teilchen im Kasten, potentialfrei (Wdh.)

Teilchen im Kasten, mit periodischem Potential der Rümpfe

2-dimensionaler Fall

Allgemeines

Beispiel: Squarium

Reziprokes Gitter, k-Flächen/-Raum, BZ

3-dimensionaler Fall, einfache Metalle

Allgemeines

Bandstrukturen

FERMI-Flächen

 ${\it Zustandsdichten}$

Zusammenfassung

(! die Kristallstrukturen der magnetischen Elemente Fe und Co werden hier nicht korrekt vorausgesagt!)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シタぐ

Teilchen im Kasten, potentialfrei (Wdh.) Teilchen im Kasten, mit periodischem Potential der Rümpf

2 -dimensionaler Fall

Allgemeines Beispiel: Squarium Reziprokes Gitter, *k*-Flächen/-Raum, BZ

3-dimensionaler Fall, einfache Metalle Allgemeines Bandstrukturen FERMI-Flächen Zustandsdichten

4 Zusammenfassung

BS II: NFE-Ansatz

Caroline Röhr

1-dimensionaler Fall

Teilchen im Kasten, potentialfrei (Wdh.)

Teilchen im Kasten, mit periodischem Potential der Rümpfe

2-dimensionaler Fall

Allgemeines

Beispiel: Squarium

Reziprokes Gitter, k-Flächen/-Raum, BZ

3-dimensionaler Fall, einfache Metalle

Allgemeines

Bandstrukturen

FERMI-Flächen

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

 ${\it Zustandsdichten}$

- ▶ NFE-Ansatz = Teilchen im Kasten $\mapsto \psi_k = PW$
- $\blacktriangleright\,k$ als Quantenzahl, Wellenzahlvektor, Impuls
- ▶ E-Änderungen bei periodischen Potentialen an den Stellen $\frac{\pi}{a}, \frac{2\pi}{a}, \dots$
- \blacktriangleright Zurückfalten der Bänder \mapsto Translationssymmetrie \mapsto reziprokes Gitter
- NFE- (II) und LCAO-Ansatz (I) führen zu ähnlichen Ergebnissen und der gleichen Darstellung von Bandstrukturen
- ▶ LCAO (z.B. Hückel, LMTO-ASA usw.) günstig für kovalentere Systeme (I)
- ▶ NFE/PW günstiger für metallische Systeme (II = hier)
- 'praktikable' Festkörpertheorie: 'Mischung' aus LCAO (Atom-artige Basisfunktionen) und NFE (PW, ebene Wellen) (III = nächste Woche)

Caroline Röhr

1-dimensionaler Fall

Teilchen im Kasten, potentialfrei (Wdh.)

Teilchen im Kasten, mit periodischem Potential der Rümpfe

2-dimensionaler Fall

Allgemeines

Beispiel: Squarium

Reziprokes Gitter, k-Flächen/-Raum, BZ

3-dimensionaler Fall, einfache Metalle

Allgemeines

Bandstrukturen

FERMI-Flächen

Zustandsdichten