BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\boldsymbol{e}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

Bandstrukturen V: Bandstruktur und Eigenschaften Quantenchemische Rechenmethoden: Grundlagen und Anwendungen

http://ruby.chemie.uni-freiburg.de/Vorlesung/Seminare/m+k_bs_V.pdf

Caroline Röhr

Universität Freiburg, Institut für Anorganische und Analytische Chemie

 $\rm SS~2025$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ つへで

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur Thermodynamik, spezifische Wärme c_e Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 ${
m Nb_3Sn}$ MgB₂

Systeme mit offenen d/f-Schalen MOTT-Isolatoren und der Parameter UÜbergangsmetall-Verbindungen, HUBBARD-MOTT-Modell Magnetische Ordnung

Zusammenfassung

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\ensuremath{\mathcal{Ce}}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

▲ロト ▲掃ト ▲注ト ▲注ト - 注 - のへで

Literatur

- ▶ P. A. Cox: The Electronic Structure of Solids, Oxford University Press, Oxford, Reprint (2005).
- ▶ A. P. Sutton: Elektronische Struktur in Materialien, Wiley (1996).
- ▶ U. Mizutani: Introduction to the Electron Theory of Metals, Cambridge (2001).
- ▶ W. Tremel, R. Seshadri, E. W. Finckh: Chemie in unserer Zeit 35, 42-58 (2001).
- ▶ Lehrbücher der Festkörper- und Materialchemie
 - ▶ A. West: Solid State Chemistry and its Application, Wiley, 2. Auflage (2014).
 - ▶ R. D. Tilley: Understanding solids: The science of materials, 3. Aufl., Wiley (2021).
 - ▶ PDF-Materialien zur Vorlesung *Festkörperchemie** (SS2022)
- Lehrbücher der Festkörper-Physik (z.B. Ch. Kittel, A. Marx, etc.)
 - N. W. Ashcroft, N. D. Mermin, D. Wei: Solid State Physics, Cengage Learning Asia (2016).

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\ensuremath{\mathcal{Ce}}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleite

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

^{*}http://ruby.chemie.uni-freiburg.de/Vorlesung/fk_chemie_0.html

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur Thermodynamik, spezifische Wärme c_e

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

Nb₃Sn MgB₂

Systeme mit offenen d/f-Schalen MOTT-Isolatoren und der Parameter UÜbergangsmetall-Verbindungen, HUBBARD-MOTT-Mode Magnetische Ordnung

Zusammenfassung

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\ensuremath{\mathcal{Ce}}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Klassische Halbleiter: Struktur und Bandstruktur

▶ klassische Halbleiter: Si, Ge, III-V-Halbleiter

- ▶ Diamantstruktur (CN=4, kubisch, Raumgruppe $Fd\bar{3}m$ bzw. $F\bar{4}3m$)
- ▶ breites VB mit *s*-*p*-Mischung
- ▶ VB-Oberkante mit σ -p-Charakter \mapsto von Γ fallend
- \blacktriangleright LB-Unterkante \mapsto unterschiedliche Bandverläufe
- ▶ $\Delta E = E_g$ bei III-V-HL durch Phasenbreiten variabel

▶ Wunsch: einstellbare Größe und Typ (i/d) der Bandlücke ('Band Gap Design')

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\boldsymbol{e}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 - のへで

Größe der Bandlücke (aus DOS)

Substanz	Typ	$E_g [eV]$
(Modifikation)	$\mathrm{der}~\mathrm{BL}$	bei $0~{\rm K}$
C (Diamant)	i	5.4
Si	i	1.17
Ge	i	0.744
Sn (α)	d	0.08
As, Sb, Bi		0
Se	d	1.74
Te	d	0.33
GaP	i	2.26
GaAs	d	1.42
InAs	d	0.36
InSb	d	0.17
CdS	d	2.582
CdSe	d	1.840
$CuInSe_2$ (CIS)	d	1.02

InSb

GaAs

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\boldsymbol{e}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

 $CuInSe_2$

Bandlücke und Farbigkeit: Pigmente

- Salze mit Bandlücken zwischen 1.6 eV (12 500 cm⁻¹) und 3.1 eV (25 000 cm⁻¹)
- $\blacktriangleright\,$ hohe Übergangswahrscheinlichkeiten
- ▶ VB → LB = Charge-Transfer-Übergänge am Γ -Punkt
 - z.B. Sulfide von Metallen mit vollständig besetzten d-Schalen

 $\mathbf{Zn}_{1\text{-}x}\mathbf{Cd}_{x}\mathbf{S}$

 $\mathbf{CdS}_{1\text{-}x}\mathbf{Se}_x$

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\ensuremath{\mathcal{C}}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Klinobisvanit

Polymorphie von BiVO_4^2 :

-
① Scheelit (CaWO₄) Typ (ts: $I4_1/a$, $5 \times 5 \times 11$ Å); 2.34 eV
-
② Klinobisvanit (ms: I2/a, $5 \times 5 \times 11$,
 $\beta \approx 90^{\circ}$); 2.40 eV
-
③ Dreyerit (tz: Zirkon (ZrSiO₄) Typ, $I4_1/amd,\,7{\times}7{\times}4$ Å); 2.90 eV
- Pucherit (Pnca, 5×5×12 Å, nur natürlich)
- Fergusonit (orthorhombisch, nur natürlich)

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\ensuremath{\mathcal{C}}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

1 APW+lo, 5000 k-Punkte, Engel-Vosko-GGA WIEN2K; 2 Anwendung in der Fötokatative diskutiert 🗄 🛌 🔊 🤇 🔿

Art der Bandlücke – optische Eigenschaften (d/i)

- ► Auswahlregel für optische Übergänge: $\Delta k = 0$ (direkte Bandlücke)
- ▶ für LEDs, HL-Laser, Solarzellen
- $\blacktriangleright\,$ nur senkrechte Übergänge wegen Impulserhaltung $(p=\hbar k)$
 - e^- (k_F ca. 10⁸ cm⁻¹) \gg Photon (500 nm: 10⁵ cm⁻¹)
- ▶ bei Rekombination von Ladungsträgern (Anwendungen: LED, HL-Laser)
 - \blacktriangleright direkt: Emission von Licht der entsprechenden Wellenlänge
 - ▶ indirekt: *E* wird überwiegend als Wärme frei (verbotene Übergänge, gleichzeitige Abgabe von Phononen)

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme c_e

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Art der Ladungsträger: periodisches Zonenschema

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\boldsymbol{e}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

<□▶ <□▶ < 三▶ < 三▶ < 三 ● のへで

HALL-Effekt: Messung der Art der Ladungsträger

- Ablenkung bewegter Ladungsträger im magnetischen Feld
- \blacktriangleright Vorzeichen des Hall-Koeffizienten \mapsto Art der Ladungsträger
- Größe $\propto \frac{1}{\text{Ladungsträgerdichte}}$
- ▶ für typische Metalle:
 - ▶ Cu: Ladungsträger sind e^- (HALL-Koeffizient \ominus)
 - ▶ Al, In: Ladungsträger sind Löcher (HALL-Koeffizient \oplus)

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\boldsymbol{e}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

◆ロト ◆聞 ト ◆臣 ト ◆臣 ト ◆ 国 - ◆ ○ へ ⊙

Elektrische Leitfähigkeiten (Eigenhalbleiter)

 \blacktriangleright spezifische Leitfähigkeit σ von Eigenhalbleitern

$$\sigma_i = en_i(\mu_e + \mu_h)$$

- ▶ μ : Beweglichkeit der Ladungsträger (bei HL weniger wichtig)
 - e⁻ besser beweglich als Löcher (h): $\mu \sim \frac{1}{m_{eff}}$
 - gering bei großen Massen
 - groß bei kleinen Bandlücken
 - ▶ typische Werte
 - ▶ klein: Si: 1350 cm²/Vs
 - ▶ groß: PbTe: $5 \cdot 10^6 \text{ cm}^2/\text{Vs}$

▶ n_i : Zahl der Ladungsträger = f(T, m_{eff} , E_g) (primär entscheidend)

$$n_i \sim T^{3/2} m_{\text{eff}}^{3/4} e^{-\frac{E_g}{2kT}}$$

- $E_g: = 4 \text{ eV} \mapsto 10^{-35} e^-/\text{Å}^3$
- $E_g: = 0.25 \text{ eV} \mapsto 10^{-2} e^-/\text{Å}^3$

 $\blacktriangleright\ m_{\rm eff}:$ intrinsische HL \mapsto mehr Ladungsträger bei größeren Massen

▶ wegen großer Beweglichkeit der e^- gegenüber Löchern \mapsto Form und effektive Masse der LB-Unterkante wichtig BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\ensuremath{\mathcal{Ce}}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleite

 Nb_3Sn

 MgB_2

Sac

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

Gradienten der Bänder, effektive Massen

- ▶ intrinsischer HL bei $T \neq 0$:
 - \blacktriangleright we nige e^- in LB-Unterkante
 - ▶ wenige Löcher in der VB-Oberkante
- ▶ dotierte HL:
 - ▶ p-HL: Depopulation der VB-Oberkante
 - ▶ n-HL: Population der LB-Unterkante
- ▶ *E*-Eigenwerte für e^- im potentialfreien Kasten:

$$E = \frac{\hbar^2 k^2}{2m_e}$$

 \blacktriangleright d.h. Bandsteigung bei beliebigem
 k

$$\frac{dE}{dk} = \underbrace{\frac{\hbar^2}{m_e}}_{\text{Steigung}} k$$

- ▶ flache Bänder \mapsto größere effektive Masse $m_{\text{eff}} \mapsto$ stärker gebundene e^-
- $\blacktriangleright \mapsto \operatorname{im} \vec{E}\operatorname{-Feld}$ größerer Impulsübertrag auf Gitter

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\boldsymbol{e}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ● ● ●

Form der FERMI-Fläche (Gradient der Bänder)

- Steigung der VB-Oberkante und der LB-Unterkante wichtig
- ▶ 1D, am Γ-Punkt (k=0) gilt in guter Näherung LB: $E = E_{LB}^0 + \frac{\hbar}{2m_{eff}}k^2$ VB: $E = E_{VB}^0 - \frac{\hbar}{2m_{eff}}k^2$

► 3D

- ▶ FERMI-Flächen \mapsto Ellipsoide
- ▶ $m_{\text{eff}} \mapsto \text{Tensor } \mathbf{M}$
- ▶ Hauptachsen (effektive Massen m_{eff}) z.T. sehr unterschiedlich
- ▶ Beispiele für m_{eff} (relativ zu m_{e^-})
 - ▶ InSb: 0.015 (leicht, metallisch, nahe NFE)
 - ▶ InAs: 0.026
 - ► GaAs: 0.066 (schwer)
 - ▶ InP: 0.073 (schwer, kovalent, flache Bänder)
 - $\blacktriangleright\,$ Cu₂O: 0.99 (sehr schwer, ionisch, flache Bänder)

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\boldsymbol{e}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへで

 $m_{\rm eff}$ beeinflußt ...

- ▶ ... die Beweglichkeit μ wegen $\mu \sim \frac{1}{m_{\text{eff}}}$
- ▶ ... Ladungsträgerkonzentration n_i wegen $n_i \sim m_{\text{eff}}^{3/4}$
- \ldots unterschiedlich:

Bindungstyp	Bänder	Hauptachse	Krümmung	$m_{\rm eff}$	n_i	μ
metallisch	steil	klein	groß	klein	klein	groß
kovalent/ionisch	flach	groß	klein	groß	groß	klein

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\boldsymbol{e}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

<□▶ <□▶ < 三▶ < 三▶ < 三 ● のへで

Beispiele

^{*} WIEN2K-Demo: FERMI-Fläche Si-LB.

▶ Si^{*} (indirekter HL)

- ▶ LB: 6 'Zigarren' bei [001] (X)
 - ▶ ca. 80 % vom Zonenzentrum entfernt
 - ▶ e^- -Bahnen (konvex im k-Raum)
 - $\ \, \blacktriangleright \ \, m_L = 1.0 m_e; \ \, m_T = 0.2 m_e \\ (L = \text{longitudinal}, \ \, T = \text{transversal zur} \\ \text{'Zigarren'Achse})$
- ▶ VB: 2 Arten von Löchern bei Γ (k=0)
 - *m*_{eff} groß: *m*_L = 0.49 *m*_e; *m*_T = 0.16 *m*_e
 ▶ mehr Ladungsträger → Elektronik
- ► Ge (indirekter HL)
 - ▶ LB: Ellipsoide auf 6-Eckflächen [111] (L)
 - $m_L = 1.6 \ m_e; \ m_T = 0.08 \ m_e$

► InSb

- ▶ LB-Minimum am Γ -Punkt \mapsto direkter HL
- steile Bandränder, große Krümmung, weniger Ladungsträger
- ▶ → kleine effektive Massen $m_{\rm eff} = 0.015 \ m_e$
- ▶ \mapsto Optoelektronik, auch wegen direkter BL

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\boldsymbol{e}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ つへで

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur Thermodynamik, spezifische Wärme c_e Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

Nb₃Sn MgB₂

Systeme mit offenen d/f-Schalen MOTT-Isolatoren und der Parameter U Übergangsmetall-Verbindungen, HUBBARD-MOTT-Mode Magnetische Ordnung

Zusammenfassung

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\boldsymbol{e}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

Wunsch: maximal großer ZT-Wert, je ein p- und ein n-HL:

- $ZT = \frac{S^2\sigma}{\kappa}T$
- ► $S = \text{SEEBECK-Koeffizient: } S \propto \frac{1}{\text{DOS}(E_F)} \frac{\delta \text{DOS}(E_F)}{\delta E}$ groß bei Isolatoren !
- σ = elektronische Leitfähigkeit: $\sigma \propto \text{DOS}(E_F)$ groß bei Metallen !

• $\kappa = W$ ärmeleitfähigkeit: $\kappa = \kappa_e + \kappa_{Gitter}$

- $\kappa_e \propto \sigma T$ (WIEDEMANN-FRANZ'sches Gesetz)
- ▶ Kompromiss: gleiche Zustandsdichte, höhere Steigung
- ▶ hohe Symmetrie, da Bänder mit hoher Entartung
- ▶ 'nano' und div. nicht/teilkristalline Materialien, 'Rattling cations' für Phonenstreuung → 'Elektronenkristall' – 'Phononenglas'

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme c_e

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

▲ロト ▲□ ト ▲ 三 ト ▲ 三 ト の へ ()・

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur Thermodynamik, spezifische Wärme c_e Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 ${
m Nb_3Sn}$ MgB₂

Systeme mit offenen d/f-Schalen MOTT-Isolatoren und der Parameter UÜbergangsmetall-Verbindungen, HUBBARD-MOTT-Mode Magnetische Ordnung

Zusammenfassung

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\boldsymbol{e}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

▲ロト ▲掃ト ▲注ト ▲注ト - 注 - のへで

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Fhermodynamik, spezifische Wärme c_{ϵ}

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn MgB₂

Systeme mit offenen d/f-Schalen MOTT-Isolatoren und der Parameter U Übergangsmetall-Verbindungen, HUBBARD-MOTT-Mode Magnetische Ordnung

Zusammenfassung

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\boldsymbol{e}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

▲ロト ▲掃ト ▲注ト ▲注ト - 注 - のへで

1 Bandstruktur

- breite Bänder mit hoher Dispersion
- ▶ große Bandsteigungen
- \blacktriangleright Bänder kreuzen E_F

2 Zahl der 'freien' VB-Elektronen (N)

▶ alle Elektronen des Valenzbands (Na: 1/Atom, Al: 3/Atom etc.)

3 tDOS am FERMI-Niveau $(DOS(E_F))$

- ▶ hohe tDOS bei E_F typisch für Metalle
- ▶ auch oberhalb E_F weitere unbesetzte Zustände durch:
 - teilbesetzte Bänder (Na, Li, K usw.)
 - ▶ überlappende Bänder (z.B. Be, Ca, die meisten TM usw.)
- ▶ viele physikalische Eigenschaften direkt abhängig von $DOS(E_F)$

4 Absolutwert von $E_F(E_F)$

- ▶ wichtig für viele thermodynamische Eigenschaften
- \blacktriangleright = 'chemisches Potential'

5 FERMI-Flächen

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\boldsymbol{e}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへで

Absolutwerte für E_F und abgeleitete Größen

▶ aus Absolutwert von E_F abgeleitete Größen:

- FERMI-Geschwindigkeit v_F nach $E_F = \frac{1}{2}mv_F^2$ (1)
- ▶ 'virtuelle' FERMI-Temperatur T_F nach $E_F = k_B T_F$ (2) mit $k_B = \frac{R}{L} = 1.4 \cdot 10^{-23}$ J/K
- ▶ typische Werte dieser Größen in Metallen:

Metall	e^- -Konzen-	k_F	FERMI-Geschwin-	E_F	T_F
	tration $[\text{cm}^{-3}]$	$[m^{-1}]$	digkeit $[cms^{-1}]$	[eV]	[K]
Na	$2.65 \cdot 10^{22}$	$0.92\cdot10^{10}$	1.07	3.23	$3.75 \cdot 10^4$
Cu	$8.45 \cdot 10^{22}$	$1.36 \cdot 10^{10}$	1.57	7.00	$8.12 \cdot 10^4$
Ca	$4.60 \cdot 10^{22}$	$1.11\cdot10^{10}$	1.28	4.68	$5.43 \cdot 10^4$
Al	$18.06 \cdot 10^{22}$	$1.75 \cdot 10^{10}$	2.02	11.63	$13.49 \cdot 10^4$
Sn	$14.48 \cdot 10^{22}$	$1.62\cdot 10^{10}$	1.88	10.03	$11.64\cdot 10^4$

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\ensuremath{\mathcal{Ce}}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

Einfluss der Temperatur

- ▶ e^- (= Fermionen) \mapsto folgen Fermi-Dirac-Statistik^{*}
- ▶ mit der Verteilungsfunktion:

$$f(E) = \frac{1}{1 + e^{\frac{E - E_F}{k_B T}}}$$

- ▶ f(E): Wahrscheinlichkeit, dass Niveau der Energie E (bei Temperatur T) besetzt ist
- ► da: $E_F \approx 10 \text{ eV}$ und $k_B T$ bei Raumtemperatur $\approx 0.025 \text{ eV}$
- \blacktriangleright \mapsto nur e^- nahe E_F können angeregt werden
- tieferliegende Zustände ohne Bedeutung für thermodynamische Eigenschaften
- ▶ FERMI-Fläche wichtig für viele Eigenschaften
 - ▶ grundsätzlich (bei Halbleitern): Bandlücken < 0.03 eV bei RT irrelevant

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\ensuremath{\mathcal{C}}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

* dagegen Boltzmann: $\frac{N_1}{N_0} \propto e^{-\frac{\Delta E}{kT}}$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

DOS bei $T \neq 0$ K (qualitativ)

- ▶ bei *T*-Erhöhung \mapsto nur wenige e⁻ im Bereich von k_BT um E_F anregbar
 - ▶ $N = \text{Zahl der } e^-$ bei $E_F = k_B T_F$
 - ▶ N_{na} = Zahl der e⁻ bei $E_{na} = k_B(T_F T)$
- ▶ für die DOS freier Elektronen (FERMI-Gas) gilt

$$DOS(E_F) = \frac{3N}{2E_F} \tag{3}$$

- ► bei ungefähr gleichbleibender DOS bei E_F und $E_{na} \mapsto N \propto E$
- ▶ Verhältnis der Zahl angeregter (N_a) zur Gesamtzahl der e⁻ N bei der Energie E_F :

$$\frac{N_a}{N} = \frac{N - N_{na}}{N} = \frac{T_F - (T_F - T)}{T_F} = \frac{T}{T_F}$$

▶ also: Anteil angeregter e^- bei T: $\frac{T}{T_F}$ z.B. Al: $E_F = 11.63 \text{ eV} \mapsto T_F = 134\ 900 \text{ K} \mapsto \text{bei RT nur } 0.02\ \%$ aller e^- angeregt

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\ensuremath{\mathcal{C}}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter \boldsymbol{U}

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

▲ロト ▲□ ト ▲ 三 ト ▲ 三 ト の へ ()・

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur Thermodynamik, spezifische Wärme c_e

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

Nb₃Sn MgB₂

Systeme mit offenen d/f-Schalen MOTT-Isolatoren und der Parameter U Übergangsmetall-Verbindungen, HUBBARD-MOTT-Mode Magnetische Ordnung

Zusammenfassung

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\mbox{\it e}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

▲ロト ▲掃ト ▲注ト ▲注ト - 注 - のへで

Spezifische Wärme c_v der e^- in Metallen (c_e)

- ▶ c_v viel geringer als erwartet, da nicht alle e^- anregbar/beitragen (DULONG-PETIT Regel: $c_{\text{mol}} = 24.9 \frac{\text{J}}{\text{mol K}}$ auch für e^- , unabhängig von T)
- ▶ jedes der anregbaren $N\frac{T}{T_E}$ Elektronen \mapsto thermische Energie k_BT

$$U \approx N \frac{T}{T_F} k_B T$$

damit f
ür die W
ärmekapazit
ät

$$c_e = \frac{\delta U}{\delta T} \approx N k_B \frac{T}{T_F}$$

▶ !! nur der Bruchteil $\frac{T}{T_F}$ aller e^- trägt zur spezifischen Wärme bei

▶ oder wegen $DOS(E_F) \propto \frac{N}{E_F} \propto \frac{N}{T_F}$ (3) mit $DOS(E_F)$ formuliert:

 $c_e \propto \mathrm{DOS}(E_F)T$

▶ exakte Ableitung (länglich) ergibt für freies Elektronengas:

1

$$c_e = \frac{\pi^2}{2} N k_B \frac{T}{T_F} \tag{4}$$

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\mbox{\boldmath e}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○ ◆○

▶ praktisch messbare^{*} Materialkonstante: SOMMERFELD-Parameter γ (aus (4))

$$\gamma = \frac{c_e}{T} = \frac{\pi^2}{2} N k_B \frac{1}{T_F}$$

- daraus T_F und damit E_F bestimmbar
- ▶ für Ideal-Fall 'freies Elektronengas' $\mapsto \gamma_{\text{frei}} \propto m_e$
- ▶ für reale Metalle: Ermittlung einer 'effektiven thermischen Masse' $m_{\rm th}$

$$\frac{\gamma_{exp}}{\gamma_{\rm frei}} = \frac{m_{\rm th}}{m_e}$$

• Werte für m_{th}

- ▶ normale Metalle: nur geringe Abweichungen von m_e (in beide Richtungen)
- 'schwere FERMIonen': γ bis 1000 × größer
 z.B. CeAl₃, UBe₁₃, CeCu₂Si₂ (WW mit *f*-Elektronen)
 hohe DOS (z.B. durch *f*-Bänder bei E_F)

* T-Abhängigkeit von c bei kleinem T; Achsenabschnitt der Gerade $\frac{c}{T}$ – (T²); $c = \overline{a_e} + e_{Gitter} = \overline{\gamma}T + \overline{a_r}^3$ $\mathscr{O} \setminus \mathbb{O}$

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\pmb{e}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter \boldsymbol{U}

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur Thermodynamik, spezifische Wärme c_e

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Mb_3Sn MgB_2

Systeme mit offenen d/f-Schalen MOTT-Isolatoren und der Parameter U Übergangsmetall-Verbindungen, HUBBARD-MOTT-Mode Magnetische Ordnung

Zusammenfassung

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\boldsymbol{e}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

▲ロト ▲掃ト ▲注ト ▲注ト - 注 - のへで

Wärmeleitfähigkeit (Elektronenanteil κ_e)

▶ Wärmeleitung (Wärmestromdichte \mathbf{j}_Q in $\left[\frac{W}{m^2} = \frac{J}{sm^2}\right]$)

$$\mathbf{j}_Q = -\kappa \mathbf{grad}T$$
 bzw. $\frac{\mathrm{d}Q}{\mathrm{d}t} = -\kappa A \frac{\mathrm{d}T}{\mathrm{d}x}$

aus kinetischer Gastheorie (PC-I) f
ür den Elektronenanteil

$$\kappa_e = \frac{1}{3} c_e v l \tag{5}$$

▶ l: mittlere freie Weglänge (z.B. für reines Cu: 300 K: 30 nm; 4K: 3 mm)
 ▶ v = v_F = ^l/_τ: FERMI-Geschwindigkeit

Einsetzen von (4) in (5): $\kappa_e = \frac{1}{3} \underbrace{\frac{\pi^2}{2} N k_B \frac{T}{T_F}}_{=c_e} v_F l$

• mit
$$E_F = k_B T_F$$
 folgt

$$\kappa_e = \frac{\pi^2}{6} \frac{N k_B^2 T}{E_F} v_F l$$

• mit
$$E_F = \frac{1}{2}m_e v_F^2$$
 ergibt sich dann

$$\kappa_e = \frac{\pi^2}{3} \frac{Nk_B^2 T}{m_e v_F^2} v_F l = \frac{\pi^2}{3} \frac{Nk_B^2 T}{m_e v_F} l$$

(6)

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\ensuremath{\mathcal{C}}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト 一 臣 - の Q ()

▶ aus (6) folgt mit $l = v_F \tau$ (τ : Stosszeit) für den elektronischen Anteil an der Wärmeleitfähigkeit von Metallen:

$$\kappa_e = \frac{\pi^2}{3} \frac{N k_B^2 T}{m_e} \tau \tag{7}$$

▶ !! alle $N e^-$ tragen zu κ_e bei !!

► oder wegen $\text{DOS}(E_F) \propto \frac{N}{E_F} \propto \frac{N}{m_e v_F^2}$ (3) mit der $\text{DOS}(E_F)$ formuliert: $\kappa_e \propto \text{DOS}(E_F) v_F^2 \tau T$

- ▶ in reinen Metallen:
 - κ bei gewöhnlichen Temperaturen über Gitterschwingungen limitiert (τ und κ_e groß, κ_{Gitter} entscheidend)
- ▶ in Legierungen:
 - ▶ kleinere mittlere freie Weglänge
 - ▶ e^- und Gitter-Anteil etwa vergleichbar (s. Thermoelektrika)

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\ensuremath{\mathcal{C}}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへで

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\ensuremath{\mathcal{C}}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

	κ	linearer therm. Ausdehnungs-
	[W/mK]	koeffizienten $[K^{-1}10^{-6}]$
W	178	4.5
Cu	398	16.5
Ag	428	19
Al	247	23.6
$Konstantan^*$	22	
C (Diamant)	3320	
Ge	58.66	5.75
Glas	2	0.5

* 40 % Ni, 60 % Cu

Elektronische Leitfähigkeit σ

▶ elektrische Leitfähigkeit (Ohm'sches Gesetz)

$$\mathbf{j}_q = -\sigma \mathbf{grad}U$$
 bzw. $\frac{\mathrm{d}q}{\mathrm{d}t} = -\sigma A \frac{\mathrm{d}U}{\mathrm{d}x}$

mit

$$\sigma = Ne\mu$$

• und der Beweglichkeit*
$$\mu = \frac{e\tau}{m_e}$$
 folgt

$$\sigma = \frac{Ne^2\tau}{m_e} \tag{8}$$

- \blacktriangleright ! alle Valenzelektronen Ntragen zur Leitfähigkeit bei
- ▶ ! T-Abhängigkeit wird durch $\tau(T)$ (Stosszeit) bestimmt
- \blacktriangleright typische Werte für freie Weglängen l (hochreine Cu-Einkristalle):
 - ▶ 300 K: 30 nm
 - ▶ 4 K: 3 mm
- ▶ mit FERMI-Geschwindigkeiten v_F von (Cu bei 4 K) 1.56 10⁶ m/s
- \blacktriangleright ergeben sich Stosszeiten τ von
 - ▶ 300 K: 10^{-15} s (Stöße der e^- mit Phononen)
 - $\blacktriangleright~4$ K: 10^{-9} s (Stöße mit Fremdatomen und Gitterfehlern)
- ► erklärt *T*-Abhängigkeit von σ bei Metallen (σ steigt beim Abkühlen)

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme c_e

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

э

SOR

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

... zur Beweglichkeit μ der Leitungselektronen

▶ e⁻ bewegen sich thermisch in alle Richtungen bis sie nach einer freien Flugdauer τ durch einen Stoß abgelenkt werden:

 $\tau = \frac{l}{v}$

 \blacktriangleright in einem elektrischen Feld *E* werden sie zusätzlich beschleunigt

$$\dot{v} = -\frac{eE}{m_e}$$

▶ bis zum nächsten Stoss nach der Zeit τ haben sie dann eine mittlere Driftgeschwindigkeit v_d von

$$v_d = -\frac{eE\tau}{m_e}$$

• da die Beweglichkeit μ als vom *E*-Feld unabhängige (auf *E* normierte) Geschwindigkeit v des Ladungstransportes definiert ist

$$\mu = \frac{v}{E}$$

▶ ist μ vom elektrischen Feld unabhängig:

$$\mu = -\frac{e\tau}{m_e}$$

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\ensuremath{\mathcal{C}}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

▲ロト ▲掃ト ▲ヨト ▲ヨト ニヨー わんで

▶ ⇐

Elektrische Leitfähigkeiten: einige Werte

	E_g	Ladungsträger-	e^- -Beweg-	spezifische	T_c	κ
		konzentration	lichkeit μ	Leitfähigkeit	[K]	[W/mK]
		$[e^-/cm^3]$	$[\mathrm{cm}^2/\mathrm{Vs}]$	$\sigma \; [\Omega^{-1} \mathrm{m}^{-1}]$	(SL)	
Si	1.17 (i)		1350	$4 \cdot 10^{-4}$		
Ge	0.744 (i)		3600	$2.2 \cdot 10^{-4}$		
Te	0.33 (d)					
As	0	$2 \cdot 10^{20}$				
\mathbf{Sb}	0	$5.5 \cdot 10^{19}$		2.8		
Bi	0	$2.88 \cdot 10^{17}$		1		
Κ	0	$1.4 \cdot 10^{22}$		$15.9 \cdot 10^{6}$		
Na	0	$2.65 \cdot 10^{22}$		$23 \cdot 10^{6}$		
Cu	0	$9.3 \cdot 10^{22}$		$65 \cdot 10^6$		398
Al	0			$38 \cdot 10^6$		247
Hg				$4.4 10^6$	4.2	

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme c_e

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

► für das Verhältnis von thermischer (κ_e , Gl. (7)) und der elektronischer (σ , Gl. (8)) Leitfähigkeit von Metallen folgt

$$\frac{\kappa_e}{\sigma} = \frac{\frac{\pi^2}{3} \frac{Nk_B^2 T}{m_e} \tau}{\frac{Ne^2 \tau}{m_e}} = \frac{\pi^2 k_B^2}{3e^2} T$$

► WIEDEMANN-FRANZ'sches Gesetz

Das Verhältnis von thermischer zu elektrischer Leitfähigkeit ist direkt proportional zur Temperatur.

Bei konstanter Temperatur sind Wärmeleitfähigkeit und elektrische Leitfähigkeit proportional zueinander. Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\boldsymbol{e}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

◆ロト ◆聞 ト ◆臣 ト ◆臣 ト ◆ 国 - ◆ ○ へ ⊙

Supraleitfähigkeit bei metallischen Elementen

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme c_e

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

Li	Be			Ti								В	С	Ν	0	F	Ne
	0.026		0.39 Sprungtemperatur [K]														
Na	Ma		100 kritisches Magnetfeld [Gauss]										Si	Р	S	CI	Ar
	J											1.140					
												105					
K	Са	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
			0.39	5.38							0.875	1.091					
			100	1420							53	51					
Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	-	Xe
			0.546	9.50	0.92	7.77	0.51	0.0003		-	0.56	3.4035	3.722				
			47	1980	95	1410	70	0.049			30	293	309				
Cs	Ba	La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
		6.00	0.12	4.483	0.012	1.4	0.655	0.14			4.153	2.39	7.193				
		1100		830	1.07	198	65	19			412	171	803				
Fr	Ra	Ac		Dr	Nd			/h L									
				FI	INU				u 4								
								0.	.1			keine	e Supr	aleite	r		
			Th	Pa	11												
			1.26									Supr	aleitei	r unte	r Druc	:k	
			1.50	0 1.4	-												

Bandstrukturen/Fermiflächen dazu bei Legierungen/Supraleitern, s.u.
Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur Thermodynamik, spezifische Wärme c_e

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 ${
m Nb_3Sn}$ MgB₂

Systeme mit offenen d/f-Schalen MOTT-Isolatoren und der Parameter U Übergangsmetall-Verbindungen, HUBBARD-MOTT-Mode Magnetische Ordnung

Zusammenfassung

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\boldsymbol{e}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleite

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

▲ロト ▲掃ト ▲注ト ▲注ト - 注 - のへで

Supraleiter

• 2-Bandtheorie:

• Kreuzung steiler und flacher Bänder genau bei E_F • Substanzklassen: [Entdeckungsjahr]

$1913 \ \mathrm{Hg}$

- 1950 klassische Supraleiter, BCS-Theorie, niedrige Sprungtemperaturen (z.B. Nb₃Ge: T_c =23.2 K)
- 1986 (Bednorz, Müller): Oxido-Cuprate, High- T_c -Supraleiter
 - Kristall- und elektronische Struktur sehr komplex (s.a. TM-Verbindungen unten)
 - keine vollständige theoretische Erklärung

2001 MgB₂ \Downarrow

; 2005 Fe-Arsenide (IBSC), z.B. $A^{I}{}_{x}A^{II}{}_{1-x}[Fe_{2}As_{2}]$

 $2015 H_3S$ unter Druck

2019 Superhydride, z.B. La H_{10} ($T_c = 260 \text{ K bei } p = 190 \text{ GPa}$)

2020 C-S-H-Phasen: $(H_2S)_x(CH_4)_{1-x}H_n$ (z.B. $n=7: T_c = 288$ K bei p = 267 GPa) BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme c_e

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleite

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

Historisches: Grafisch

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

elektronischen Strukturen. Einfluss der Temperatur

Thermodynamik, spezifische

Transporteigenschaften: Wärme- und elektronische

Systeme mit offenen

Mott-Isolatoren und der

Übergangsmetall-HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

ヘロト 人間ト 人注ト 人注ト Э Sac

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur Thermodynamik, spezifische Wärme c_e

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen MOTT-Isolatoren und der Parameter U Übergangsmetall-Verbindungen, HUBBARD-MOTT-Mode Magnetische Ordnung

Zusammenfassung

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\boldsymbol{e}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

▲ロト ▲掃ト ▲注ト ▲注ト - 注 - のへで

- ► FRANK-KASPER-Phase
- ► Cr₃Si-Typ, kubisch, Raumgruppe $Pm\bar{3}n$
- *d*_{Nb-Nb} = 264.3 pm (2×)
 → Nb-Ketten mit starker
 d-*d*-Wechselwirkung
- ▶ einander durchdringende FK-Polyeder
 - $CN_{Sn} = 12$ (Ikosaeder, FK-12)
 - CN_{Nb} = 14 (doppelt überkapptes hexagonales Antiprisma, FK-14)
- ohne Polyeder (lokal, ruby)
- mit Ikosaeder (lokal, ruby)
- ▶ beide Polyeder (lokal, ruby)

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\boldsymbol{e}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

Nb₃Sn MgB₂ Systeme mit offe

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

- ► FRANK-KASPER-Phase
- ► Cr₃Si-Typ, kubisch, Raumgruppe $Pm\bar{3}n$
- ► d_{Nb-Nb} = 264.3 pm (2×)
 → Nb-Ketten mit starker
 d-d-Wechselwirkung
- ▶ einander durchdringende FK-Polyeder
 - ▶ $CN_{Sn} = 12$ (Ikosaeder, FK-12)
 - CN_{Nb} = 14 (doppelt überkapptes hexagonales Antiprisma, FK-14)
- ohne Polyeder (lokal, ruby)
- mit Ikosaeder (lokal, ruby)
- ▶ beide Polyeder (lokal, ruby)

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\boldsymbol{e}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

- ► FRANK-KASPER-Phase
- ► Cr₃Si-Typ, kubisch, Raumgruppe $Pm\bar{3}n$
- *d*_{Nb-Nb} = 264.3 pm (2×)
 → Nb-Ketten mit starker
 d-*d*-Wechselwirkung
- ▶ einander durchdringende FK-Polyeder
 - $CN_{Sn} = 12$ (Ikosaeder, FK-12)
 - CN_{Nb} = 14 (doppelt überkapptes hexagonales Antiprisma, FK-14)
- ohne Polyeder (lokal, ruby)
- mit Ikosaeder (lokal, ruby)
- ▶ beide Polyeder (lokal, ruby)

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\boldsymbol{e}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

Nb₃Sn MgB₂

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

Nb₃Sn: elektronische Struktur (Zustandsdichten)

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\boldsymbol{e}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Sac

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

FP-LAPW-Rechnung, 1000 k-Punkte, PBE-GGA

$\rm Nb_3Sn:$ Supraleitende Eigenschaften und Bandstruktur

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\boldsymbol{e}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

▶ Supraleiter 2. Art

- ▶ kritische Magnetfeldstärke: $H_c=30$ T
- ► '2-Band-Modell'
 - \mapsto direkt bei E_F :
 - ▶ steile (metallisch) und
 - ▶ flache (kovalent) Bänder

1.0 0.0 EF Energie [eV] -3.0 -4 ($-5.0 \pm X$ Ŕ M

2.0

Bandstruktur von Nb_3Sn

FP-LAPW-Rechnung, 1000 $k\mbox{-}{\rm Punkte},\mbox{ PBE-GGA}$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ つへで

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur Thermodynamik, spezifische Wärme c_e

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 MgB_2

Systeme mit offenen d/f-Schalen MOTT-Isolatoren und der Parameter U Übergangsmetall-Verbindungen, HUBBARD-MOTT-Mode Magnetische Ordnung

Zusammenfassung

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\boldsymbol{e}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

▲ロト ▲掃ト ▲注ト ▲注ト - 注 - のへで

Supraleiter: MgB_2

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\boldsymbol{e}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

$MgB_2: \ 'Fermi-Surface-Nesting'$

- 2-Band-Modell f
 ür die e⁻-Phonon-Kopplung
- ► e_{2g} -Phonon (B-B-Streckmode, $\omega = 0.075 \text{ eV}$)
- Kopplung mit σ-Löchern (FERMI-Fläche konkav)
- Aufhebung der Entartung der p_x/p_y -Bänder bei Γ-A
- $\blacktriangleright \mapsto \text{Lücke: } \Delta E_{\Gamma-A} = 1\text{-}2 \text{ eV}$
- π -bindend (nur bei $K M > E_F$, lochartig, konkav)
- ► π -antibindend (nur bei H-L < E_F , elektronenartig, konvex)

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\ensuremath{\mathcal{C}}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter \boldsymbol{U}

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur Thermodynamik, spezifische Wärme c_e

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

Nb₃Sn MgB₂

Systeme mit offenen d/f-Schalen MOTT-Isolatoren und der Parameter UÜbergangsmetall-Verbindungen, HUBBARD-J Magnetische Ordnung

Zusammenfassung

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\ensuremath{\mathcal{Ce}}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

MOTT-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

▲ロト ▲掃ト ▲注ト ▲注ト - 注 - のへで

MOTT-Isolator (Band-Band-Isolatoren): einfachstes Modell

experimentelle Beobachtung

- ▶ bei großen Atomabständen
- $\blacktriangleright \sigma$ sehr klein \mapsto Bandlücke
- ► Metall \mapsto Isolator-Übergang (MOTT¹)

berechnetes Modellsystem (MOTT)

- H-Atomkette, halb gefülltes Band
- Spinpolarisation, Auftreten magnetischer Momente (Vermeiden der Spinpaarung)
- ► 1-e⁻-Theorie und BLOCH-Ansatz zur Beschreibung nicht mehr ausreichend
- ► \mapsto Energie U für Spinpaarung (HUBBARD-U) (relativ zu t^*)
 - Werte z.B. für 3d-Metalle:
 U: einige eV; t: einige 100 meV

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\ensuremath{\mathcal{C}}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

1: NEVILL FRANCIS MOTT (1905-1996); *: Transfer-Integral für Hüpfprozess 🕢 🗆 🕨 🖉 🖉 🔍 🔿 🔍 🖓

- ▶ s. Beispiel $\operatorname{Fe}^{3+}(d^5) \Rightarrow$
- $\blacktriangleright \ U = IE EA$
- ► U entspricht der Spinpaarungsenergie der Komplexchemie
- $\blacktriangleright\,$ typische Werte: 3 bis 10 eV
- ▶ Resultat f
 ür die DOS: unteres (↑) und oberes (↓) HUBBARD-Band
- Verhältnis von U zur Bandbreite W beeinflußt physikalischen Eigenschaften z.B. von Übergangsmetall-Salzen entscheidend

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\ensuremath{\mathcal{C}}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

<□▶ <□▶ < 三▶ < 三▶ < 三 ● のへで

Hubbard U-Parameter

- ▶ LDA+U oder GGA+U (mit 'Double-counting'-Korrektur)
- ▶ erfordern Vorgabe von U (Woher?) (Dateien: *.inorb und *.indm)
- ▶ spinpolarisierte Rechnungen (\uparrow und \downarrow separat rechnen)

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\ensuremath{\mathcal{Ce}}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Systeme mit offenen d/f-Schalen

MOTT-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Hubbard U-Parameter

- ▶ LDA+U oder GGA+U (mit 'Double-counting'-Korrektur)
- ▶ erfordern Vorgabe von U (Woher?) (Dateien: *.inorb und *.indm)
- ▶ spinpolarisierte Rechnungen (\uparrow und \downarrow separat rechnen)

Beispiele aus unserer 'Küche'

 \blacktriangleright Eu $^{2+}$ in intermetallischen Phasen Eu
Ge (CrB-Typ) und Eu $_{3}\mathrm{Al}_{2}\mathrm{Ge}_{4}$ (Eu $^{2+}:f^{7})$

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\ensuremath{\mathcal{Ce}}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

MOTT-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ つへで

EuGe: spinpolarisiert, ohne U

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\ensuremath{\mathcal{Ce}}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

MOTT-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト の Q ()・

EuGe: spinpolarisiert, mit U = 6 eV

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\ensuremath{\mathcal{Ce}}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

MOTT-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

$Eu_3Al_2Ge_4$: spinpolarisiert, mit U = 6 eV

0

Eu(1)

Ge(1

Eu(2)

Kristallstruktur

•

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\ensuremath{\mathcal{C}}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

B. Bauer, C.R., Z. Naturforsch. 66b, 793-812 (2011).

<□▶ <□▶ < 三▶ < 三▶ < 三 ● のへで

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur Thermodynamik, spezifische Wärme c_e

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn MgB₂

Systeme mit offenen d/f-Schalen MOTT-Isolatoren und der Parameter UÜbergangsmetall-Verbindungen, HUBBARD-MOTT-Modell Magnetische Ordnung

Zusammenfassung

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\ensuremath{\mathcal{Ce}}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへで

Was ist das HUBBARD-U? ... Erinnerung

- ▶ s. Beispiel $\operatorname{Fe}^{3+}(d^5)$
- $\blacktriangleright \ U = IE EA$
- ► U entspricht der Spinpaarungsenergie der Komplexchemie
- $\blacktriangleright\,$ typische Werte: 3 bis 10 eV
- ▶ Resultat f
 ür die DOS: unteres (↑) und oberes (↓) HUBBARD-Band
- Verhältnis von U zur Bandbreite W beeinflußt physikalische Eigenschaften z.B. von Übergangsmetall-Salzen entscheidend

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\ensuremath{\mathcal{C}}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

<□▶ <□▶ < 三▶ < 三▶ < 三 ● のへで

besondere, interessante elektrische (und magnetische) Eigenschaften:

- ▶ wichtige Werkstoffe für Elektronik:
 - ▶ Spinelle/Ferrite AB_2O_4 , z.B. Fe^{III}[(Fe^{II}Fe^{III})O₄], auch mit Co, Mn
 - $\blacktriangleright\,$ Ilmenite: $AB{\rm O}_3,$ z.B. FeTi ${\rm O}_3,$ LiTi ${\rm O}_3,$ Fe $_2{\rm O}_3,$ Ti $_2{\rm O}_3$
 - \blacktriangleright Perowskite: LaMnO_3, LaCoO_3, LaNiO_3
 - \blacktriangleright NaCl-Ordnungsvarianten: Li $M\!O_2,$ z.B. LiCo $\!O_2,$ LiNi $\!O_2$
- charakteristische Abfolge der Bänder
 - ▶ VB an O zentriert
 - ▶ LB an den Metall-Atomen zentriert
 - dazwischen Bänder der d-Zustände, durch U in oberes und unteres HUBBARD-Band aufgespalten

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme c_e

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト の Q ()・

Elektronische Eigenschaften einiger TM-Oxide

▶ Übergangsmetalloxide AO (meist NaCl-Typ)

- $\blacktriangleright\,$ nur TiO und VO sind Metalle
- ▶ MnO, FeO, CoO, NiO: p-HL, z.T. verzerrte Strukturen
- ▶ ZnO: n-HL
- ▶ CuO: d⁹-Sonderfall (verzerrter PtS-Typ, Cu quadratisch-planar koordiniert)

▶ Perowskite AMO_3

- ▶ LaTiO₃: Metall bis 4 K (d^1)
- ▶ LaCrO₃: Isolator (d^3)
- ▶ LaMnO₃: Isolator (d^4)
- ▶ LaFeO₃: Isolator (d^5)
- ► LaCoO₃: HL, mit ΔE = 0.1 eV,
- ▶ LaNiO₃: Metall bis 4 K (d^7)
- ▶ LaCuO₃: Metall bis 4 K (d^8)

\blacktriangleright Li MO_2

- ▶ LiCoO₂: Isolator
- ▶ LiNiO₂: Isolator, ferromagnetisch bis 10 K, darüber antiferromagnetisch

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\boldsymbol{e}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

MOTT-HUBBARD-Theorie zu Metall-Halbleiter-Übergängen

zwei Bereiche:

- $\blacktriangleright U < W$
 - ▶ normale Bandstrukturbeschreibung (BLOCH) noch korrekt
 - \blacktriangleright Spinpolarisation ohne Bedeutung für elektronische/magnetische Eigenschaften
- $\blacktriangleright U > W$
 - Bandstrukturbeschreibung nicht mehr ausreichend
 - weitere Klassifizierung nach relativer Größe von
 - ▶ $U: e^- e^-$ -'Abstossung' (Spinpaarungsenergie)
 - ▶ W: Bandbreiten der TM-Zustände
 - ▶ Δ : E-Abstand zwischen Anionen- (O-2p) und TM- (d) Zuständen

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\boldsymbol{e}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

▲ロト ▲掃ト ▲注ト ▲注ト - 注 - のへで

ZAANEN-SAWATZKY-ALLEN Klassifizierung

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\boldsymbol{e}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter \boldsymbol{U}

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

J. Zaanen, G. A. Sawatzky, J. W. Allen, Phys. Rev. Lett., 55 418 (1985). 🔹 🗆 🕨 🔄 🖉 🔍 🖓 🖓

0~Uklein gegenW und Δ

- \blacktriangleright Spinpaarungsenergie Uklein gegenW und Δ
- Bandstruktur-Beschreibung bleibt korrekt
- ▶ \mapsto Metalle (sog. *d*-Metalle)
- ▶ z.B. TiO, LaO

O U groß gegen W: Unterscheidung nach
 Δ M-d – L [z.B. O(2p)] Abstand

- A HUBBARD-MOTT-Isolatoren
 - $\blacktriangleright \Delta \gg U$
 - ▶ U W bestimmt Bandlücke
 - \blacktriangleright \mapsto Isolatoren, trotz teilgefüllter d-Schalen, z.B. NiO
- B Charge-Transfer-Isolatoren
 - $\blacktriangleright \quad \Delta < U$
 - Isolatoren, Δ bestimmt die Bandlücke
- C Semi-Metalle (mit Tendenz zur PEIERLS-Verzerrung)
 - $\Delta \approx 0$ bzw. $\Delta < W$
 - $\blacktriangleright\,$ bei Übergangsmetallen mit niedrig liegenden d-Niveaus
 - ▶ z.B. MnO₂ (Peierls-verzerrte Rutil-Struktur)

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme c_e

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur Thermodynamik, spezifische Wärme c_e

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

Nb₃Sn MgB₂

Systeme mit offenen d/f-Schalen

MOTT-Isolatoren und der Parameter U Übergangsmetall-Verbindungen, HUBBARD-MOTT-Model Magnetische Ordnung

Zusammenfassung

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\boldsymbol{e}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト 一 臣 - の Q ()

 \blacktriangleright Berechnungen unter Vorgabe verschiedenster magnetischer Ordnungen möglich \mapsto Spindichten

Beispiele aus unserer 'Küche'

- ▶ Magnetismus von alten^[1] und neuen^[2] Chalkogenido-Ferraten, -Cobaltaten und -Manganaten
- ▶ u.A. als Modellsysteme von Metalloproteine bis zu IBSC (Fe-basierte SL)

 BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\ensuremath{\mathcal{C}}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

$K_6[Fe^{III}_2S_6], m$ - $Rb_6[Fe^{III}_2S_6] und m$ - $Rb_6[Fe^{III}_2Se_6]$

Synthese: K/S: K, Fe, S (5:1:4); $T_{max}=1100$ °C Rb/S: Rb₂S, Fe, S; $T_{\text{max}}=500$ °C Rb/Se: Rb, Fe, Se (stöchiom.), $T_{\text{max}}=700$ °C Kristalle: grünmetallisch glänzend

	${ m K}_{6}[{ m Fe}_{2}{ m S}_{6}]^{[1]}$	$\mathrm{Rb}_6[\mathrm{Fe}_2\mathrm{S}_6]^{[1]}$	$\mathrm{Rb}_6[\mathrm{Fe}_2\mathrm{Se}_6]^{[2]}$
Strukturtyp		$\operatorname{Cs}_6[\operatorname{Ga}_2\operatorname{Se}_6]$	
Kristallsystem		monoklin	
Raumgruppe		$P2_1/c$, Nr. 1-	4
Gitter- a	772.50(1)	796.06(5)	827.84(5)
parameter b	1251.24(2)	1291.35(8)	1329.51(7)
[pm, ^o] c	1002.80(1)	1032.40(6)	1074.10(6)
β	127.526(1)	127.163(4)	127.130(5)
Ζ		2	
R-Wert R1	0.0356	0.0466	0.0443
Abstände Fe-S ^t	224.3	224.9	237.4/239.3
[pm] Fe-S ^{br}	230.5	231.0	241.0/243.3
Fe-Fe	298.4	300.5	313.4
CN S		1+7, 2+5	
A		$6 (2 \times), 7$	

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen. Einfluss der Temperatur

Thermodynamik, spezifische Wärme Ce

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_2Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

[1] M. Schwarz, M. Haas, C.R., Z. Anorg. Allg. Chem. 639, 360-374 (2013); [2] M. Schwarz, P. Stüble, C.R., Z. ◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つく? Naturforsch. 72b, 529-547 (2017).

$A_6[Fe_2Q_6]$: Magnetische Wechselwirkungen

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\boldsymbol{e}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

[1] W. Bronger, H. S. Genin, P. Müller, Z. Anorg. Allg. Chem. 625, 274-278 (1999); [2] S. C. Engelhardt, G. Frisch,

F. Emmerling, C.R., Z. Kristallogr. Suppl. 25, (2007); [3] M. Schwarz, P. Stüble, C.R. Z. Naturforsch. 72b/ 529-547 (2017). C

Magnetische Wechselwirkungen in Chalkogenido-Metallaten

- ► starke AFM-Wechselwirkung ($J \approx -20 \text{ meV}$)
- ▶ hohe NÉEL-Temperaturen (\gg RT)
- gegenüber HS erniedrigte magnetische Momente μ (?)
- ► starke (kovalente ?) σ (+ π ?) $L \mapsto M$ -Hinbindung
- ▶ kontroverse Diskussion der Mechanismen der magnetischen Wechselwirkung →

direkter Fe-Fe-Austausch ?
 d_{Fe-Fe} in reinem Eisen: 248 pm

GOODENOUGH-KANAMORI-ANDERSON (GKA) Regeln^[1] für Superaustausch zwischen $HS-d^5$ -Ionen BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme c_e

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

$$\underbrace{2 \times \operatorname{Fe}^{\operatorname{III}} d^5}_{10} + \underbrace{6 \times Qp^6}_{36} = 46 \ (23^{\uparrow}, \ 23^{\downarrow})$$

Q		Ο	S	Se
q	Fe	+1.61	+1.11	+0.97
	$Q^{\mathrm{br.}}$	-1.32	-1.08	-0.99
4	$2^{\text{term.}}$	-1.34	-1.20	-1.15
V	Fe	10.3	11.9	13.5
$[10^{6} \text{pm}^{3}]$	$Q^{\mathrm{br.}}$	18.2	32.6	29.3
4	$2^{\text{term.}}$	18.0	39.4	47.1
$\mu_{\rm Fe}$		3.83	3.49	3.48
HF^{*} [T]		27.4	21.3	19.8
ρ _{BCP}	Fe-Q	0.66 -	0.52 -	0.51 -
$[e^{-}/10^{6} \mathrm{pm}^{3}]$		0.85	0.58	0.55
$\nabla^2 \rho_{\rm BCP} \ [10^{-10} \mathrm{p}$	$m^{-5}]$	+12.92	+3.55	+2.61

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\boldsymbol{e}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

pDOS und Spin-Dichten der Rb-Diferrate $\text{Rb}_6[\text{Fe}_2Q_6]$

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\boldsymbol{e}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

M. Schwarz, P. Stüble, C.R., Z. Naturforsch. 72b, 529-547 (2017).

▲ロト ▲掃ト ▲ヨト ▲ヨト ニヨー わんで

 $0.077 \ 0.111 \ 0.116 \ 0.064 \ 0.095 \ 0.098$

 $0.899\ 0.915\ 0.915\ 0.163\ 0.129\ 0.122$

0.904 0.915 0.915 0.143 0.152 0.148

 $0.899\ 0.890\ 0.895\ 0.102\ 0.236\ 0.247$

0.902 0.895 0.901 0.157 0.254 0.267

0.908 0.897 0.902 0.127 0.260 0.277

0

4.59 4.62 4.64 0.76 1.13 1.16

3.83 3.49 3.48

 d_{2}

 d_{xy}

Σ

MM

$Na_7[Fe_2^{II,III}S_6]$

Synthese: Na	a, Pyrit (st	öchiometrisch); $T_{\max} = 800$		~~?
Strukturtyp		eigener		
Kristallsyste	em	triklin	84	
Raumgrupp	e	<i>P</i> 1, Nr. 2	8	
Gitter-	a	764.15(2)		<u>م</u>
konstanten	Ь	1153.70(2)	Fe(21)	
$[pm,^{\circ}]$	с	1272.58(3)	Fe(2	²² a
	α	62.3325(7)	· · · · · · · · · · · · · · · · · · ·	Fe(22)
	β	72.8345(8)		
	γ	84.6394(8)	0.9	
R-Wert	R1	0.0185	Fe(22)	
Abstände	$\text{Fe-S}^{\text{term.}}$	227.7 - 230.8		~~~
[pm]	$\mathrm{Fe-S^{br.}}$	231.8 - 239.3		Fe(22)
	Fe-Fe	279.5, 290.4		
CN	S ^{br.}	2+4, 2+5		$ \rightarrow $
	S^{term} .	1+6, 1+7		\rightarrow
	Na	$4+1~(2\times),~5~(6\times),~6~(3\times)$		
Gitterenergi	e: Fe ^{II} /Fe ^I	^{III} : 95 bis 118 kJ/mol Fe $_2$	36	

günstiger als $\mathrm{Fe}^{\mathrm{II}}/\mathrm{Fe}^{\mathrm{II}} + \mathrm{Fe}^{\mathrm{III}}/\mathrm{Fe}^{\mathrm{III}}$

P. Stüble, S. Peschke, D. Johrendt, C.R., J. Solid State Chem. 258, 416-430 (2018). Э Sac

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen. Einfluss der Temperatur

Thermodynamik, spezifische Wärme c_e

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

 $Na_7[Fe_2^{II,III}S_6]$

<u>Synthese:</u> Na, Pyrit (stöchiometrisch); $T_{\text{max}} = 800 \,^{\circ} \text{C}$

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\boldsymbol{e}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung
$Na_7[Fe_2^{II,III}S_6]$: magnetische Suszeptibilität

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\boldsymbol{e}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

$Na_7[Fe_2^{II,III}S_6]$: magnetische Suszeptibilität

- CURIE-WEISS-Fit: $\mu_{\text{eff}} = 7.453(2) \ \mu_B / [\text{Fe}_2 S_6]$
- ► 'spin-only' für $S = \frac{9}{2}$ (1×HS-Fe^{III}+1×HS-Fe^{II}): $\mu_{\rm eff} = 2\sqrt{\frac{5}{2}(\frac{5}{2}+1) + \frac{4}{2}(\frac{4}{2}+1)}\mu_B = 7.68\mu_B$
- \blacktriangleright \mapsto valenz-delokalisierter FM HS-Situation
- einziges analoges Beispiel: Cys56Ser- bzw.
 Cys60Ser-Mutanten des [Fe₂S₂]-Ferredoxin aus Clostridium pasteurianum^[2]
- ▶ idealer SO-Wert <u>hier</u> (FM) → Die Spin-Reduktion bei <u>allen anderen</u> kondensierten Ferraten ist auf die AFM-Spinordnung im Anion zurückzuführen.

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\boldsymbol{e}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

$Na_7[Fe_2^{II,III}S_6]$: magnetische Suszeptibilität

- CURIE-WEISS-Fit: $\mu_{\text{eff}} = 7.453(2) \ \mu_B / [\text{Fe}_2 \text{S}_6]$
- ► 'spin-only' für $S = \frac{9}{2}$ (1×HS-Fe^{III}+1×HS-Fe^{II}): $\mu_{\rm eff} = 2\sqrt{\frac{5}{2}(\frac{5}{2}+1) + \frac{4}{2}(\frac{4}{2}+1)}\mu_B = 7.68\mu_B$
- \blacktriangleright \mapsto valenz-delokalisierter FM HS-Situation
- einziges analoges Beispiel: Cys56Ser- bzw.
 Cys60Ser-Mutanten des [Fe₂S₂]-Ferredoxin aus Clostridium pasteurianum^[2]
- idealer SO-Wert <u>hier</u> (FM) → Die Spin-Reduktion bei <u>allen anderen</u> kondensierten Ferraten ist auf die AFM-Spinordnung im Anion zurückzuführen.

	0	1/2	1	3/2	2	5/2	9/2	5	7	15/2	17/2	9
	AFM						$_{\rm FM}$					
$[{}^{\rm III/III}_{2}{}^{\rm S_2}]^{2+}$	0		563		1079			752				
$[{}^{II/III}_{2}S_{2}]^{+}$		7		871		1024	0					
$[{}^{3III}_{3}{}^{S_4}]^+$		271		0		2.2				1004		
$[{}^{\rm II/2III}_{3}{\rm S}_{4}]^{0}$	0.9		631		0				867			
$[{}^{\rm II/III}_{4}{}^{\rm S_4}]^{2+}$	0		503		643							1620
$[e_4^{3II/III}S_4]^+$		0		631		685					663	

Energiedifferenzen [meV] zwischen den Gesamtspins in Fe/S-Clustern (-SCH3-Komplexe, OPBE/TZP DFT^[3])

[1] P. Stuble, S. Peschke, D. Johrendt, C.R., J. Solid State Chem. 258, 416-430 (2018); [2] S. Subramanian, E. C. Duin, S. E. J. Fawcett, F. A. Armstrong, J. Meyer, M. K. Johnson, J. Am. Chem. Soc. 137, 4567-4580 (2015); [3] A. T. P. Carvalho, M. Swart, Chem. Inform. Model. 54, 613-620 (2014).

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\boldsymbol{e}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

$Na_7[Fe_2^{II,III}S_6]$ (+ $Na_6[Fe_2^{III}S_6]$): Zustands- und Spindichten

P. Stüble, S. Peschke, D. Johrendt, C.R., J. Solid State Chem. 258, 416-430 (2018).

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen. Einfluss der Temperatur

Thermodynamik, spezifische Wärme Ce

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur Thermodynamik, spezifische Wärme c_e

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn MgB₂

Systeme mit offenen d/f-Schalen MOTT-Isolatoren und der Parameter U Übergangsmetall-Verbindungen, HUBBARD-MOTT-Mode Magnetische Ordnung

Zusammenfassung

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme $c_{\boldsymbol{e}}$

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

▲ロト ▲掃ト ▲注ト ▲注ト - 注 - のへで

 $\blacktriangleright E_g$

- ▶ T-Abhängigkeit der elektronischen Leitfähigkeit (Impedanz-Spektroskopie)
- optische Messungen (direkte/optische Bandlücke)

$\blacktriangleright ho(\vec{r})$

Einkristallröntgenstrukturanalyse (nicht die Standardbeugung!)

► EFG

- NMR- bzw. Mößbauer-Spektroskopie
- Art und Zahl der Ladungsträger
 - ► Hall-Messungen
- ► DOS
 - ▶ Inverse Photoelektronenspektroskopie (IPS)
- Bandstruktur
 - Winkel-aufgelöste Photoelektronenspektren (ARUPS)
- ► FERMI-Fläche
 - ► DE-HAAS-VAN-ALPHEN-Effekt

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme c_e

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つく?

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

BS V: Bandstruktur und Eigenschaften

Caroline Röhr

Klassische Halbleiter

Schmalbandhalbleiter, Thermoelektrika

Metalle und Legierungen

Parameter der elektronischen Strukturen, Einfluss der Temperatur

Thermodynamik, spezifische Wärme c_e

Transporteigenschaften: Wärme- und elektronische Leitfähigkeit

Supraleiter

 Nb_3Sn

 MgB_2

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Systeme mit offenen d/f-Schalen

Mott-Isolatoren und der Parameter U

Übergangsmetall-Verbindungen, HUBBARD-MOTT-Modell

Magnetische Ordnung

Zusammenfassung

DANKE!