2. Punktgruppen/Kristallklassen Symmetrie mit konstantem Punkt

'Grundlagen der Röntgenbeugung', SS 24, Caroline Röhr

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente

Klassifizierung

I: Rotationen

II: Spiegelung

III: Inversion

Stereographische Projektion IV: Zusammenge-

setzte S.O.

Punktgruppen

Basics

Nomenklatur

Übersicht kristallographische PG

P.G. und physikalische Eigenschaften

1 Einleitung

2 Symmetrie-Elemente/Operationen

Definitionen, Nomenklatur, Klassifizierung

I: Rotationen (SO) /Drehachsen (SE)

II: Spiegelung (SO) / Spiegelebene (SE)

III: Inversion (SO) / Inversionszentrum (SE)

Einschub: Stereographische Projektion

IV: Zusammengesetzte Symmetrieoperationen

3 Punktgruppen (2D/3D)

Basics

Nomenklatur

Übersicht kristallographische Punktgruppen (2D/3D)

Punktgruppen und physikalische Eigenschaften (Polarisation)

4 Beispiele: Moleküle, Kristall/Koordinations-Polyeder

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente

Klassifizierung

I: Rotationen

II: Spiegelung

III: Inversion

Stereographische Projektion IV: Zusammenge-

setzte S.O.
Punktgruppen

Basics

Nomenklatur

Übersicht kristallographische PG

P.G. und physikalische Eigenschaften

1 Einleitung

2 Symmetrie-Elemente/Operationen

Definitionen, Nomenklatur, Klassifizierung

I: Rotationen (SO) /Drehachsen (SE)

II: Spiegelung (SO) / Spiegelebene (SE)

III: Inversion (SO) / Inversionszentrum (SE)

Einschub: Stereographische Projektion

IV: Zusammengesetzte Symmetrieoperationen

3 Punktgruppen (2D/3D)

Basics

Nomenklatur

Übersicht kristallographische Punktgruppen (2D/3D)

Punktgruppen und physikalische Eigenschaften (Polarisation

4 Beispiele: Moleküle, Kristall/Koordinations-Polyede

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente

Klassifizierung

I: Rotationen

II: Spiegelung

III: Inversion
Stereographische

Projektion

IV: Zusammengesetzte S.O.

Punktgruppen

Basics

Nomenklatur

Übersicht kristallographische PG

P.G. und physikalische Eigenschaften

Symmetrie und Methoden

- ▶ fast alle Methoden profitieren von Symmetrie
- Spektroskopie
 - Punktsymmetrie ermöglicht Koordinatentransformation in Symmetrie-adaptierte Linearkombinationen der Basiskoordinaten
 - Blockdiagonalisierung des Eigenwertproblems der Energie (Schrödinger-Gleichung)
 - ▶ Gruppentheorie → Charaktertafeln
- ► Beugung
 - Translationssymmetrie ist Basisvoraussetzung der Methode
- ▶ ? für welche Methoden Symmetrie ohne Bedeutung ?
 - ► MS, TA/DTA/TG
 - ▶ mit Einschränkungen: NMR, Mößbauer
- ▶ Bildgebung (TEM, REM, SPM) z.B. HR-TEM ↓

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente

Klassifizierung

I: Rotationen

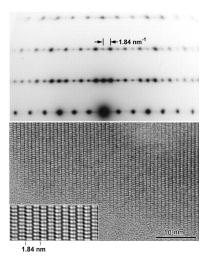
II: Spiegelung

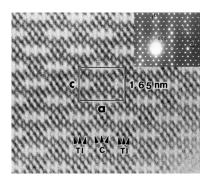
III: Inversion

Stereographische Projektion

IV: Zusammengesetzte S.O.

Punktgruppen


Basics


Nomenklatur

Übersicht kristallographische PG

P.G. und physikalische Eigenschaften

Symmetrie und Methoden: Bildgebung und Beugung im EM

klassen

2. Punktgruppen, Kristall-

Einleitung

Symmetrie-Elemente

Klassifizierung I: Rotationen

II: Spiegelung

III: Inversion

Stereographische

Projektion IV: Zusammenge-

setzte S.O.

Punktgruppen

Basics

Nomenklatur

Übersicht kristallographische PG

P.G. und physikalische Eigenschaften

Symmetrie (Kristallographie) und Strukturchemie/Beugung

Symmetrie ...

- ► ... bestimmt häufig die äußere Form der Kristalle

 Morphologie, Kristallgeometrie, Goniometrie
- ... ermöglicht/erleichtert Beschreibung des festen Zustands (Translationssymmetrie im realen Raum)
- ... erlaubt Erkennen von Strukturzusammenhängen
 (Symmetrie als Ordnungsprinzip, Gruppe-Untergruppe-Beziehung)
- ... erlaubt Erklärung von Phasenübergängen (und Verzwilligungen)
- ▶ ... bestimmt die physikalischen Eigenschaften
 - z.B. Piezoelektrizität, Pyroelektrizität, ferroische Eigenschaften
 - z.B. Beugungsbilder (für Methode Strukturbestimmung)

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente

Klassifizierung

I: Rotationen
II: Spiegelung

III: Inversion

Stereographische Projektion

IV: Zusammengesetzte S.O.

Punktgruppen

Basics

Nomenklatur

Übersicht kristallographische PG

P.G. und physikalische Eigenschaften

Symmetrie in der Chemie (bekannt?!)

Molekülchemie (OC, AC)

- OC: Chiralität (R/S)
- ► NMR: 'symmetrisch äquivalente H'
- 'Attraktivität' von Molekülen mit hoher Symmetrie •

elektronische Strukturen, Spektroskopie (PC, AC)

- Mulliken-Symbole (z.B. MO-Theorie; Bindung in Komplexen: t_{2g})
- ► Auswahlregeln (z.B. Paritätsverbot)
- ➤ Symmetriebeziehungen bei chemischen Reaktionen (z.B. Woodward-Hoffmann-Regeln)

Festkörperchemie und -physik (AC)

- ▶ Unterscheidung von Modifikationen (z.B. monokliner Schwefel)
- ightharpoonup Symmetrie im reziproken (Impuls-)Raum \mapsto Bandstrukturen

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente

Klassifizierung I: Botationen

II: Spiegelung

III: Inversion

Stereographische Projektion

IV: Zusammengesetzte S.O.

Punktgruppen

Basics

Nomenklatur

Übersicht kristallographische PG

P.G. und physikalische Eigenschaften

Symmetrie und ...

2. Punktgruppen, Kristallklassen

- ... Natur
 - ► Tiere: Spiegelsymmetrie
 - ▶ Pflanzen: vor allem Drehachsen
- ... Kunst
 - ► Darstellende Kunst (Malerei)
 - ► Architektur
 - ► Musik
- ► ... Alltag
- Links dazu
- ▶ Bedeutung bei vielen Naturgesetzen
- ► ABER: vieles wieder interessanter/'lebendiger' durch Symmetriebrechung

Einleitung

Symmetrie-Elemente

Klassifizierung

I: Rotationen

II: Spiegelung

III: Inversion

Stereographische Projektion

IV: Zusammengesetzte S.O.

Punktgruppen

Basics

Nomenklatur

Übersicht kristal-

lographische PG P.G. und physikalische Eigenschaften

Was ist Symmetrie?

Definitionen

mathematisch

Symmetrie ist die Invarianz eines Systems gegenüber Transformationen.

praktisch

Symmetrie ist die Eigenschaft einer geometrischen Figur/eines Objektes, in verschiedenen Positionen gleich auszusehen.

Alexei V. Shubnikov (1887-1970)

Evgraf S. Fedorov (1853-1919)

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente

Klassifizierung

I: Rotationen II: Spiegelung

III: Inversion

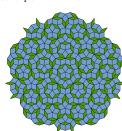
Stereographische Projektion

IV: Zusammengesetzte S.O.

Punktgruppen

Basics

Nomenklatur


Übersicht kristallographische PG

P.G. und physikalische Eigenschaften

Klassifizierung von Symmetrie

- ▶ Punkt-Symmetrie (mindestens ein Punkt bleibt fest)
 - Drehungen, Spiegelung, Punktspiegelung (Inversion)
 - Kombinationen davon
- ► Translations-Symmetrie
 - kein Punkt bleibt fest
 - ▶ Vektor beschreibt Verschiebung in 1/2/3-Dimensionen
 - ▶ 2D: periodische Muster (z.B. Tapeten, Stoffe, Fliesen usw.)
 - ▶ 3D: kristalline Festkörper
- ▶ Quasikristalle

...

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente Klassifizierung

....

I: Rotationen

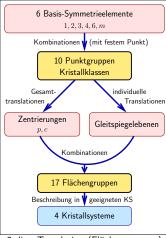
II: Spiegelung

III: Inversion

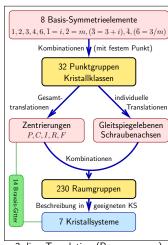
Stereographische Projektion

IV: Zusammengesetzte S.O.

Punktgruppen


Basics

Nomenklatur


Übersicht kristallographische PG

P.G. und physikalische Eigenschaften

Kristallographische Symmetrien

2-dim. Translation (Flächengruppen)

3-dim. Translation (Raumgruppen)

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-

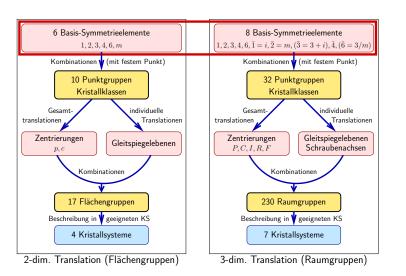
Elemente Klassifizierung

I: Botationen

IV: Zusammengesetzte S.O.

Punktgruppen

Basics


Nomenklatur

Übersicht kristal-

lographische PG

physikalische Eigenschaften

Kristallographische Symmetrien

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente

Klassifizierung

I: Rotationen

II: Spiegelung

III: Inversion Stereographische

Projektion IV: Zusammenge-

setzte S.O.

Punktgruppen

Basics

Nomenklatur

Übersicht kristallographische PG

P.G. und physikalische Eigenschaften

① Einleitung

2 Symmetrie-Elemente/Operationen

Definitionen, Nomenklatur, Klassifizierung

I: Rotationen (SO) /Drehachsen (SE)

II: Spiegelung (SO) / Spiegelebene (SE)

III: Inversion (SO) / Inversionszentrum (SE)

Einschub: Stereographische Projektion

IV: Zusammengesetzte Symmetrieoperationen

3 Punktgruppen (2D/3D)

Basics

Nomenklatuu

Übersicht kristallographische Punktgruppen (2D/3D

Punktgruppen und physikalische Eigenschaften (Polarisation

4 Beispiele: Moleküle, Kristall/Koordinations-Polyede

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-

Klassifizierung

I: Rotationen

II: Spiegelung

III: Inversion

Stereographische Projektion

IV: Zusammengesetzte S.O.

Punktgruppen

Basics

Nomenklatur

Übersicht kristallographische PG

P.G. und physikalische Eigenschaften

- ① Einleitung
- 2 Symmetrie-Elemente/Operationen

Definitionen, Nomenklatur, Klassifizierung

I: Rotationen (SO) /Drehachsen (SE)

II: Spiegelung (SO) / Spiegelebene (SE

III: Inversion (SO) / Inversionszentrum (SE)

Einschub: Stereographische Projektion

IV: Zusammengesetzte Symmetrieoperationen

3 Punktgruppen (2D/3D)

Basics

Nomenklatur

Übersicht kristallographische Punktgruppen (2D/3D

Punktgruppen und physikalische Eigenschaften (Polarisation)

4 Beispiele: Moleküle, Kristall/Koordinations-Polyede

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente

Klassifizierung

I: Rotationen

II: Spiegelung

III: Inversion
Stereographische

Projektion

IV: Zusammengesetzte S.O.

Punktgruppen

Basics

Nomenklatur

Übersicht kristallographische PG

P.G. und physikalische Eigenschaften

Definitionen

2. Punktgruppen, Kristallklassen

Symmetrie-Operation

Eine Symmetrie(Deck)-Operation (SO) ist eine Bewegung eines Körpers im Raum, die ihn in eine von der Ausgangslage ununterscheidbare Position bringt.

Symmetrie-Element

Alle Punkte, die bei dieser Bewegung unverändert bleiben, bilden das zugehörige Symmetrie-Element (SE).

Beispiel: H₂O-Molekül

!! ein Symmetrie-Element kann mehrere Symmetrie-Operationen bedingen!!

Beispiel: 3-zählige Drehachse (1 SE) = Drehung um 120° und 240° (2 SO)

Einleitung

Symmetrie-Elemente

Klassifizierung

I: Rotationen II: Spiegelung

III: Inversion

Stereographische

Projektion IV: Zusammengesetzte S.O.

Punktgruppen

Basics

Nomenklatur

Übersicht kristallographische PG

P.G. und physikalische Eigenschaften

Bezeichnungen von Punktsymmetrien (SO und Gruppen)

Schönflies (z.B. C_{2v})

- ▶ ältere Bezeichnung
- ▶ in Spektroskopie/Molekülchemie weit verbreitet
- in Kristallographie (bei Vorliegen von Translationssymmetrie) ungeeignet
- wenig systematisch

Arthur Moritz Schönflies (1853-1928)¹

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente

Klassifizierung

I: Rotationen

II: Spiegelung

III: Inversion

Stereographische Projektion

IV: Zusammengesetzte S.O.

Punktgruppen

Basics

Nomenklatur

Übersicht kristallographische PG P.G. und

P.G. und physikalische Eigenschaften

 $^{^{1}}$ www.maa.org

Bezeichnungen von Punktsymmetrien (SO und Gruppen)

Schönflies (z.B. C_{2v})

- ▶ ältere Bezeichnung
- ▶ in Spektroskopie/Molekülchemie weit verbreitet
- in Kristallographie (bei Vorliegen von Translationssymmetrie) ungeeignet
- wenig systematisch

Arthur Moritz Schönflies (1853-1928)¹

HERMANN-MAUGUIN (z.B. 2mm)

- in der Kristallographie gebräuchlich
- einigermaßen systematisch
- ► Koordinatensystem (Blickrichtungen) erforderlich

Carl Hermann (1898-1961)

Charles Victor Mauguin (1878-1958)

Einleitung

2. Punktgrup-

pen, Kristallklassen

Symmetrie-Elemente

Klassifizierung

I: Rotationen
II: Spiegelung

11: Spiegeiung

III: Inversion Stereographische

Projektion

IV: Zusammengesetzte S.O.

Punktgruppen

Basics

Nomenklatur

Übersicht kristallographische PG

P.G. und physikalische Eigenschaften

Beispiele

$^{1}~_{\rm www.maa.org}$

Klassifizierung von Punkt-Symmetrie-Operationen

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente

Klassifizierung

I: Botationen

II: Spiegelung

III: Inversion

Stereographische Projektion

IV: Zusammengesetzte S.O.

Punktgruppen

Basics

Nomenklatur

Übersicht kristal-

lographische PG P.G. und physikalische

Eigenschaften

Beispiele

einfache Einteilung

- ► Basis-SO:
 - Drehungen
 - Spiegelung
 - Inversion (Punktspiegelung)
- zusammengesetzte SO: Drehspiegelung bzw. Drehinversion H.-M. SCHÖNFLIES

Einteilung nach Chiralität

- \triangleright eigentliche SO (1. Art): z.B. Drehungen \mapsto Chiralität bleibt erhalten
- ▶ uneigentliche SO (2. Art): z.B. Inversion, Spiegelung, $Drehinversion/Drehspiegelung \mapsto Chiralität ändert sich$
- → Chiralität = Abwesenheit von Symmetrieelementen 2. Art

- ① Einleitung
- 2 Symmetrie-Elemente/Operationen

Definitionen, Nomenklatur, Klassifizierung

I: Rotationen (SO) /Drehachsen (SE)

II: Spiegelung (SO) / Spiegelebene (SE)

III: Inversion (SO) / Inversionszentrum (SE)

Einschub: Stereographische Projektion

IV: Zusammengesetzte Symmetrieoperationen

3 Punktgruppen (2D/3D)

Basics

Nomenklatur

Übersicht kristallographische Punktgruppen (2D/3D

Punktgruppen und physikalische Eigenschaften (Polarisation

4 Beispiele: Moleküle, Kristall/Koordinations-Polyede

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente

Klassifizierung

I: Rotationen

II: Spiegelung

III: Inversion

Stereographische Projektion

IV: Zusammengesetzte S.O.

 ${\bf Punktgruppen}$

Basics

Nomenklatur

Übersicht kristallographische PG

P.G. und physikalische Eigenschaften

Rotationen (SO) / Drehachsen (SE)

Beschreibung

- Rotationssymmetrie: Drehung um $\frac{360}{n}^{\circ}$ um eine Achse
- ▶ <u>SE:</u> n-zählige Drehachse (Gerade)
- ▶ SO: Drehung, Rotation
- ▶ jede *n*-zählige Drehachse bedingt n-1 SO z.B. C_3 -Achse = $C_3^1 + C_3^2$
- $ightharpoonup C_n^n = E (n-1 \text{ SO/SE})$
- ▶ eigentliche SO (1. Art): Chiralität bleibt erhalten

Bezeichnungen

- ► <u>H.-M.:</u> einfache Zahl (z.B. 3)
- ▶ SCHÖNFLIES: C_n (z.B. C_3) C = cyclische Gruppe: alle Elemente sind Potenzen eines Grundelementes
 Abelsche Gruppe (Kommutativgesetz gilt: z.B.: $C_3^2 = C_3^1 \circ C_3^1$)

Symbole: Polygone mit n Ecken

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente

Klassifizierung

I: Rotationen

II: Spiegelung

III: Inversion

Stereographische Projektion IV: Zusammenge-

setzte S.O.

Punktgruppen

Basics

Nomenklatur

Übersicht kristallographische PG P.G. und

physikalische Eigenschaften

Beispiele

▶ Objekte mit Drehachse alleine, 2D/3D, z.B. C_2 und $C_3 \Downarrow$

Objekte interstendense aneme, 2D/0D, 2.D. O2 und O3 v						
HERMANN-	Schön-	Zei-	Beispiele			
Mauguin-	FLIES-	chen	2-dimensional 3-dimensional			
Symbol				div.	Kristallpolyeder	
2	C_2	•			S — S	C ₁₂ H ₂₂ O ₁₁
3	C_3	•			H—c	
						$\mathrm{NaIO_4} \cdot 3\mathrm{H_2O}$

s.a. Web-Seite oder Vorlage 2.1

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente

Klassifizierung

I: Rotationen

II: Spiegelung

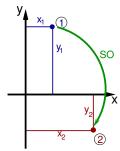
III: Inversion

Stereographische Projektion

IV: Zusammengesetzte S.O.

Punktgruppen

Basics


Nomenklatur

Übersicht kristallographische PG

P.G. und physikalische Eigenschaften

Mathematische Beschreibung

▶ Lagekoordinaten $x_1,y_1,z_1 \mapsto$ symmetrie
äquivalente Koordinaten x_2,y_2,z_2

Symmetrieoperation = 3×3 -Matrix, die mit (Spalten)-Vektor (x_1,y_1,z_1) multipliziert, die Koordinaten des symmetrieäquivalenten Punktes ergibt:

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente

Klassifizierung

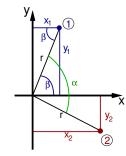
I: Rotationen

II: Spiegelung

III: Inversion

Punktgruppen

Basics


Nomenklatur

Übersicht kristallographische PG

P.G. und physikalische Eigenschaften

Mathematische Beschreibung von Drehungen

- kartesische Koordinaten
- 2-dimensionaler Fall: Drehachse \(\preceq \) Blickrichtung

- Koordinaten der beiden Punkte
 - $1 x_1 = r \cos \beta \text{ und } y_1 = r \sin \beta$
 - $2 x_2 = r \cos(\alpha \beta)$ und $y_2 = -r \sin(\alpha \beta)$

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-

Elemente

I: Rotationen

Klassifizierung II: Spiegelung

III: Inversion

Stereographische

Projektion IV: Zusammenge-

setzte S.O.

Punktgruppen

Basics

Nomenklatur

Übersicht kristallographische PG

P.G. und physikalische Eigenschaften

Mathematische Beschreibung von Drehungen

- ▶ Koordinaten der beiden Punkte
 - $1 x_1 = r \cos \beta \text{ und } y_1 = r \sin \beta$

$$2x_2 = r\cos(\alpha - \beta)$$
 und $y_2 = -r\sin(\alpha - \beta)$

- ▶ mit (s. Bronstein)
 - $\cos (\alpha \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$
 - $\Rightarrow \sin(\alpha \beta) = \sin\alpha\cos\beta \cos\alpha\sin\beta$
- ▶ folgt für die Koordinaten des transformierten Punktes 2:
 - $x_2 = r \cos \alpha \cos \beta + r \sin \alpha \sin \beta = x_1 \cos \alpha + y_1 \sin \alpha$
 - $y_2 = -r\sin\alpha\cos\beta + r\cos\alpha\sin\beta = -x_1\sin\alpha + y_1\cos\alpha$
- und damit für die Matrix im zweidimensionalen Fall:

$$\begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$$

ightharpoonup und entsprechend in drei Dimensionen (Drehachse = z-Achse):

$$\left(\begin{array}{cccc}
\cos \alpha & \sin \alpha & 0 \\
-\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right)$$

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente

Klassifizierung

I: Rotationen

II: Spiegelung

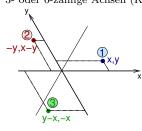
III: Inversion

Punktgruppen

Basics

Nomenklatur

Übersicht kristallographische PG


Symmetrieangepaßte Koordinatensysteme

symmetrieangepaßte Koordinatensysteme (KS) \mapsto einfache Matrizen:

▶ 2- oder 4-zählige Achsen: rechtwinkliges KS (3D)

z.B.
$$C_4^1$$
: $\begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

▶ 3- oder 6-zählige Achsen (KS mit 120°-Winkel zwischen a und b)

 $\begin{pmatrix} -1 & 0 \\ 1 & -1 \end{pmatrix}$ bzw. $\begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix}$

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-

Elemente

I: Rotationen

Klassifizierung

II: Spiegelung III: Inversion

Stereographische Projektion

IV: Zusammengesetzte S.O.

Punktgruppen

Basics

Nomenklatur

Übersicht kristallographische PG

P.G. und physikalische Eigenschaften

Zusammenfassung: Rotationen/Drehachsen

 $ightharpoonup C_n$ bzw. n

$$\mathbf{M} = \begin{pmatrix} \cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

▶ eigentliche Symmetrieoperationen, da

$$det(\mathbf{M}) = \cos^2 \alpha + \sin^2 \alpha = +1$$

▶ mit 2D/3D-Translation vereinbar (kristallographisch) \mapsto 1, 2, 3, 4, 6

2. Punktgruppen, Kristallklassen

${\bf Einleitung}$

Symmetrie-Elemente

Klassifizierung

I: Rotationen

II: Spiegelung

III: Inversion

Stereographische Projektion IV: Zusammenge-

setzte S.O.

Punktgruppen

Basics

Nomenklatur

Übersicht kristallographische PG

P.G. und physikalische Eigenschaften

• Einleitung

2 Symmetrie-Elemente/Operationen

Definitionen, Nomenklatur, Klassifizierung

II: Spiegelung (SO) / Spiegelebene (SE)

III: Inversion (SO) / Inversionszentrum (SE)

Einschub: Stereographische Projektion

IV: Zusammengesetzte Symmetrieoperationen

3 Punktgruppen (2D/3D)

Basics

Nomenklatin

Übersicht kristallographische Punktgruppen (2D/3D

Punktgruppen und physikalische Eigenschaften (Polarisation

4 Beispiele: Moleküle, Kristall/Koordinations-Polyede

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente

Klassifizierung

I: Rotationen

II: Spiegelung

III: Inversion

Stereographische Projektion IV: Zusammenge-

setzte S.O.
Punktgruppen

Basics

Nomenklatur

Übersicht kristallographische PG

P.G. und physikalische Eigenschaften

II: Spiegelung (SO) / Spiegelebene (SE)

Beschreibung

- ▶ <u>SO:</u> Spiegelung
- ▶ <u>SE:</u> Spiegelebene (Fläche)

Für
$$m \perp z \ (x, y, z \mapsto x, y, -z) \mapsto \mathbf{M} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

- $ightharpoonup \det(\mathbf{M}) = -1 \mapsto \text{uneigentliche SO} = \text{SO 2. Art}$
- $ightharpoonup \sigma^2 = E \text{ (eine SO/SE)}$

Bezeichnung

- ▶ $\underline{\text{H.-M.:}}$ m (Mirror plane) (\bot zur Blickrichtung)
- ► SCHÖNFLIES: σ

Symbol: durchgezogene Linie: senkrecht bzw. Uin zur/der Papierebene

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente

Klassifizierung

I: Rotationen

II: Spiegelung

III: Inversion

Stereographische Projektion IV: Zusammenge-

setzte S.O.

Punktgruppen

Basics

Nomenklatur

Übersicht kristallographische PG

P.G. und physikalische Eigenschaften

Beispiele

▶ Objekte mit Spiegelebene alleine

HERMANN-	Schön-	Zei-	Beispiele			
Mauguin-	FLIES-	chen	2-dimensional	3-dimensional		
Symbol			div. Moleküle		Kristallpolyeder	
m	σ		*		S	$Ca_2B_5O_9Cl\cdot H_2O$ (Hilgardit-4M)

- ▶ Hilgardit-4M im Mineralienatlas
- ▶ s.a. Web-Seite oder Vorlage 2.2

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente

Klassifizierung

I: Rotationen

II: Spiegelung III: Inversion

Stereographische

Projektion

IV: Zusammenge-

setzte S.O.

Punktgruppen

Basics

Nomenklatur

Übersicht kristallographische PG

P.G. und physikalische Eigenschaften

• Einleitung

2 Symmetrie-Elemente/Operationen

Definitionen, Nomenklatur, Klassifizierung

I: Rotationen (SO) /Drehachsen (SE)

II: Spiegelung (SO) / Spiegelebene (SE

III: Inversion (SO) / Inversionszentrum (SE)

Einschub: Stereographische Projektion

IV: Zusammengesetzte Symmetrieoperationen

3 Punktgruppen (2D/3D)

Basics

Nomenklatur

Übersicht kristallographische Punktgruppen (2D/3D)

Punktgruppen und physikalische Eigenschaften (Polarisation

4 Beispiele: Moleküle, Kristall/Koordinations-Polyede

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente

Klassifizierung

I: Rotationen

II: Spiegelung

III: Inversion

Stereographische Projektion IV: Zusammenge-

setzte S.O.

Punktgruppen

Basics

Nomenklatur

Übersicht kristallographische PG

P.G. und physikalische Eigenschaften

III: Inversion (SO) / Inversionszentrum (SE)

Beschreibung

- ▶ <u>SO:</u> Punktspiegelung, Inversion
- ► <u>SE:</u> Inversionszentrum (Punkt)
- ► Zentrosymmetrie
- $ightharpoonup x, y, z \mapsto -x, -y, -z$ (für i im Ursprung des KS)

$$\mathbf{M} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

- ▶ $det(\mathbf{M}) = -1 \mapsto uneigentliche Symmetrieoperation (2. Art)$
- $i^2 = E \text{ (eine SO/SE)}$

Bezeichnung

- ► <u>H.-M.:</u> 1̄ (s.u.)
- Schönflies: i

Symbol: o

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente

Klassifizierung

I: Rotationen

II: Spiegelung

III: Inversion

Stereographische Projektion

IV: Zusammengesetzte S.O.

Punktgruppen

Basics

Nomenklatur

Übersicht kristallographische PG

P.G. und physikalische Eigenschaften

Beispiele

▶ Objekte mit Inversionszentrum alleine

HERMANN-	Schön-	Zei-	Beispiele			
Mauguin-	FLIES-	chen	2-dimensional	3-dimensional		
Symbol			div. Moleküle		Kristallpolyeder	
Ī	i	0			Br H C C Br	MnSiO ₃ (Rhodonit)

s.a.

- ▶ Rhodonit im Mineralienatlas
- ▶ s.a. Web-Seite oder Vorlage 2.2.

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente

Klassifizierung

I: Rotationen
II: Spiegelung

....

III: Inversion

Stereographische Projektion

IV: Zusammengesetzte S.O.

Punktgruppen

Basics

Nomenklatur

Übersicht kristallographische PG

P.G. und physikalische Eigenschaften

• Einleitung

2 Symmetrie-Elemente/Operationen

Definitionen, Nomenklatur, Klassifizierung

I: Rotationen (SO) / Drehachsen (SE)

II: Spiegelung (SO) / Spiegelebene (SE)

III: Inversion (SO) / Inversionszentrum (SE)

Einschub: Stereographische Projektion

IV: Zusammengesetzte Symmetrieoperationen

3 Punktgruppen (2D/3D)

Basics

Nomenklatur

Übersicht kristallographische Punktgruppen (2D/3D

Punktgruppen und physikalische Eigenschaften (Polarisation

4 Beispiele: Moleküle, Kristall/Koordinations-Polyede

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente

Klassifizierung

I: Rotationen

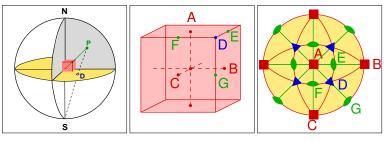
II: Spiegelung

III: Inversion

Stereographische Projektion

IV: Zusammengesetzte S.O.

Punktgruppen


Basics

Nomenklatur

Übersicht kristallographische PG

P.G. und physikalische Eigenschaften

Einschub: Stereographische Projektion (Vorlage 2.3.)

- ▶ Kugel um das Objekt (Molekül, Kristallpolyeder, etc.)
- ▶ Projektion der Punkte (Atome, Flächenmittelpunkte, Polyederecken etc.) auf die Kugelfläche (z.B. Lampe im Kugel-Zentrum → Schattenpunkt P)
- ▶ Verbinden von P mit dem Gegenpol (N/S)
- ► Durchstoßpunkt D durch Äquatorfläche = Markierung (mit Kennung, ob vom N/S-Pol projeziert wurde)

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente

Klassifizierung

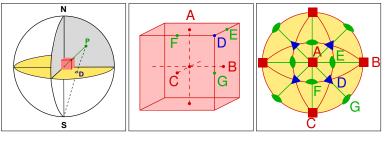
I: Rotationen
II: Spiegelung

III: Inversion

Stereographische Projektion

IV: Zusammengesetzte S.O.

Punktgruppen


Basics

Nomenklatur

Übersicht kristallographische PG

P.G. und physikalische Eigenschaften

Einschub: Stereographische Projektion (Vorlage 2.3.)

- ► Kugel um das Objekt (Molekül, Kristallpolyeder, etc.)
- ▶ Projektion der Punkte (Atome, Flächenmittelpunkte, Polyederecken etc.) auf die Kugelfläche (z.B. Lampe im Kugel-Zentrum → Schattenpunkt P)
- ▶ Verbinden von P mit dem Gegenpol (N/S)
- ► Durchstoßpunkt D durch Äquatorfläche = Markierung (mit Kennung, ob vom N/S-Pol projeziert wurde)

⇒ einfache Beispiele

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente

Klassifizierung

I: Rotationen
II: Spiegelung

III: Inversion

Stereographische Projektion

IV: Zusammengesetzte S.O.

Punktgruppen

Basics

Nomenklatur

Übersicht kristallographische PG

P.G. und physikalische Eigenschaften

einfache Beispiele

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente

Klassifizierung

I: Rotationen

II: Spiegelung

III: Inversion

Stereographische Projektion

IV: Zusammengesetzte S.O.

Punktgruppen

Basics

Nomenklatur

Übersicht kristallographische PG

P.G. und physikalische Eigenschaften

- ① Einleitung
- 2 Symmetrie-Elemente/Operationen

Definitionen, Nomenklatur, Klassifizierung

I: Rotationen (SO) /Drehachsen (SE)

II: Spiegelung (SO) / Spiegelebene (SE)

III: Inversion (SO) / Inversionszentrum (SE)

Einschub: Stereographische Projektion

IV: Zusammengesetzte Symmetrieoperationen

3 Punktgruppen (2D/3D)

Basics

Nomenklatu

Übersicht kristallographische Punktgruppen (2D/3D)

Punktgruppen und physikalische Eigenschaften (Polarisation

4 Beispiele: Moleküle, Kristall/Koordinations-Polyede

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente

Klassifizierung

I: Rotationen
II: Spiegelung

III: Inversion

III: Inversion
Stereographische
Projektion

IV: Zusammenge-

Punktgruppen

Basics

Dasics

Nomenklatur

Übersicht kristallographische PG

P.G. und physikalische Eigenschaften

Definition zusammengesetzter Symmetrieoperationen

Einleitung

2. Punktgrup-

pen, Kristallklassen

Symmetrie-Elemente

Klassifizierung I: Rotationen

II: Spiegelung

III: Inversion

Stereographische Projektion

IV: Zusammengesetzte S.O.

Punktgruppen

Basics

Nomenklatur

Übersicht kristallographische PG

P.G. und physikalische Eigenschaften

Beispiele

SCHÖNFLIES: Drehspiegelachsen

- ▶ Drehung, gefolgt von Spiegelung an Ebene ⊥ Drehachse
- ightharpoonup Bezeichung: S_n

HERMANN-MAUGUIN: Drehinversionsachsen

- ▶ Drehung, gefolgt von Inversion
- ▶ Bezeichnung: \bar{n} (*n*-quer)
- ightharpoonup kristallographisch: $\bar{1}$, $\bar{2}$, $\bar{3}$, $\bar{4}$, $\bar{6}$

Vergleich der zusammengesetzten Symmetrieoperationen

Elemente	n=1	n=2	n=3	n=4	n=6
Dreh-	S_1	S_2	S_3	S_4	S_6
spiegel-	σ	i	C_{3h}		
achse					
S_n	•	0		0	
Dreh-	Ī	$\bar{2}$	$\bar{3}$	$\bar{4}$	$\bar{6}$
inversions-	i	m	3+i		$\frac{\bar{6}}{\frac{3}{m}}$
achse					
$ar{n}$		•		000	

Einleitung

Symmetrie-Elemente

Klassifizierung

I: Rotationen
II: Spiegelung

III: Inversion

Stereographische Projektion

IV: Zusammengesetzte S.O.

Punktgruppen

Basics

Nomenklatur

Übersicht kristal-

lographische PG P.G. und physikalische

Eigenschaften

^{2.} Punktgruppen, Kristallklassen

s. a. Vorlage 2.2.

Fazit zusammengesetzte Symmetrieoperationen

SCHÖNFLIES: Drehspiegelachsen

- ▶ Drehung, gefolgt von Spiegelung an Ebene ⊥ Drehachse
- \triangleright Bezeichung: S_n

HERMANN-MAUGUIN: Drehinversionsachsen

- ▶ Drehung, gefolgt von Inversion
- ▶ Bezeichnung: \bar{n} (*n*-quer)
- \blacktriangleright kristallographisch: $\bar{1}$, $\bar{2}$, $\bar{3}$, $\bar{4}$, $\bar{6}$

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente

Klassifizierung

I: Rotationen

II: Spiegelung

III: Inversion Stereographische Projektion

IV: Zusammenge-

Punktgruppen

Basics

Nomenklatur

Übersicht kristallographische PG

P.G. und physikalische Eigenschaften

Fazit zusammengesetzte Symmetrieoperationen

SCHÖNFLIES: Drehspiegelachsen

- ▶ Drehung, gefolgt von Spiegelung an Ebene ⊥ Drehachse
- \triangleright Bezeichung: S_n

HERMANN-MAUGUIN: Drehinversionsachsen

- ▶ Drehung, gefolgt von Inversion
- ▶ Bezeichnung: \bar{n} (*n*-quer)
- ightharpoonup kristallographisch: $\bar{1}$, $\bar{2}$, $\bar{3}$, $\bar{4}$, $\bar{6}$
- ► NEU: 4

Vergleich: Schönflies - Hermann-Mauguin

- $\bar{1} = S_2 = i$
- $ightharpoonup \bar{2} = S_1 = m = \sigma$
- $\bar{3} = S_6$
- $\bar{4} = S_4$
- $ightharpoonup \bar{6} = S_3 = \frac{3}{m}$

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente

Klassifizierung

I: Rotationen
II: Spiegelung

III: Inversion

Stereographische Projektion

IV: Zusammengesetzte S.O.

Punktgruppen

Basics

Nomenklatur

Übersicht kristallographische PG P.G. und

physikalische Eigenschaften

Fazit zusammengesetzte Symmetrieoperationen

SCHÖNFLIES: Drehspiegelachsen

- ▶ Drehung, gefolgt von Spiegelung an Ebene ⊥ Drehachse
- \triangleright Bezeichung: S_n

HERMANN-MAUGUIN: Drehinversionsachsen

- ▶ Drehung, gefolgt von Inversion
- \triangleright Bezeichnung: \bar{n} (n-quer)
- ightharpoonup kristallographisch: $\bar{1}$, $\bar{2}$, $\bar{3}$, $\bar{4}$, $\bar{6}$
- ► NEU: 4

Vergleich: Schönflies - Hermann-Mauguin

- $\bar{1} = S_2 = i$
- $ightharpoonup \bar{2} = S_1 = m = \sigma$
- $\bar{3} = S_6$
- $ightharpoonup \bar{4} = S_4$
- $ightharpoonup \bar{6} = S_3 = \frac{3}{m}$

kristallographische Symmetrieoperationen insgesamt

▶ 8 Stück: 1, 2, 3, 4, 6, $\bar{1}=\mathrm{i}, \bar{2}=m, (\bar{3}=3+\mathrm{i}), \bar{4}, (\bar{6}=\frac{3}{m})$

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente

Klassifizierung

I: Rotationen

II: Spiegelung

III: Inversion Stereographische Projektion

IV: Zusammenge-

Punktgruppen

Basics

Nomenklatur

Übersicht kristallographische PG P.G. und

physikalische Eigenschaften

- ① Einleitung
- 2 Symmetrie-Elemente/Operationen

Definitionen, Nomenklatur, Klassifizierung

I: Rotationen (SO) /Drehachsen (SE)

II: Spiegelung (SO) / Spiegelebene (SE)

III: Inversion (SO) / Inversionszentrum (SE)

Einschub: Stereographische Projektion

IV: Zusammengesetzte Symmetrieoperationen

3 Punktgruppen (2D/3D)

Basics

Nomenklatur

Übersicht kristallographische Punktgruppen (2D/3D)

Punktgruppen und physikalische Eigenschaften (Polarisation)

4 Beispiele: Moleküle, Kristall/Koordinations-Polyeder

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente

Klassifizierung

I: Rotationen

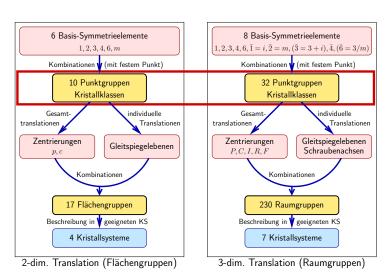
II: Spiegelung

III: Inversion
Stereographische

Projektion

IV: Zusammengesetzte S.O.

D..... 1-4 ------


Basics

Nomenklatur

Übersicht kristallographische PG

P.G. und physikalische Eigenschaften

Kristallographische Symmetrien

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente

Klassifizierung

setzte S.O.

Punktgruppen

Basics

Nomenklatur

Übersicht kristal-

lographische PG

physikalische Eigenschaften

- ① Einleitung
- 2 Symmetrie-Elemente/Operationen

Definitionen, Nomenklatur, Klassifizierung

I: Rotationen (SO) /Drehachsen (SE)

II: Spiegelung (SO) / Spiegelebene (SE

III: Inversion (SO) / Inversionszentrum (SE)

Einschub: Stereographische Projektion

IV: Zusammengesetzte Symmetrieoperationen

3 Punktgruppen (2D/3D)

Basics

Nomenklatur

 $\ddot{\mathrm{U}}\mathrm{bersicht}$ kristallographische Punktgruppen (2D/3D)

Punktgruppen und physikalische Eigenschaften (Polarisation

4 Beispiele: Moleküle, Kristall/Koordinations-Polyede

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente

Klassifizierung

I: Rotationen
II: Spiegelung

--- --

III: Inversion
Stereographische

Projektion

IV: Zusammengesetzte S.O.

Punktgruppen

Basics

Nomenklatur

Übersicht kristallographische PG

P.G. und physikalische Eigenschaften

Punktgruppe = Sammlung von Symmetrie-Operationen eines Objektes (z.B. eines Moleküls, Kristalls oder Koordinationspolyeders)

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente

Klassifizierung

I: Rotationen

II: Spiegelung

III: Inversion

Stereographische Projektion IV: Zusammenge-

setzte S.O.
Punktgruppen

Basics

Nomenklatur

Übersicht kristallographische PG

P.G. und physikalische Eigenschaften

 $^{^{1}\,}$ bzw. Multiplikation der $3\!\times\!3\text{-Transformationsmatrizen}$

Punktgruppe = Sammlung von Symmetrie-Operationen eines Objektes (z.B. eines Moleküls, Kristalls oder Koordinationspolveders)

- ▶ Punkt: mindestens ein Punkt bleibt fest
- ▶ Gruppe: Die Symmetrieoperationen erfüllen bzgl. der Verknüpfung Hintereinanderausführen (\circ) 1 die Bedingungen einer mathematischen Gruppe:
 - Eine Gruppe ist eine Menge $\mathfrak G$ von Elementen g_i , zwischen denen eine Verknüpfung besteht, so dass jedem geordneten Paar g_i , g_j genau ein Element $g_k \in \mathfrak G$ zugeordnet ist. (Abgeschlossenheit)
 - 2 Die Verknüpfung ist assoziativ, es gilt

$$(g_i \circ g_j) \circ g_k = g_i \circ (g_j \circ g_k)$$

3 Es gibt ein Neutralelement e für das gilt:

$$e \circ q_i = q_i \circ e = q_i$$
 für alle $q_i \in \mathfrak{G}$

4 Für alle Elemente g gibt es ein Inverses Element g^{-1} für das gilt:

$$g \circ g^{-1} = g^{-1} \circ g = e$$

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente

Klassifizierung

I: Rotationen

II: Spiegelung

Stereographische Projektion

IV: Zusammengesetzte S.O.

Punktgruppen

Basics

Nomenklatur

Übersicht kristal-

lographische PG P.G. und

P.G. und physikalische Eigenschaften

 $^{^1}$ bzw. Multiplikation der $3\!\times\!3\text{-Transformationsmatrizen}$

Punktgruppe = Sammlung von Symmetrie-Operationen eines Objektes (z.B. eines Moleküls, Kristalls oder Koordinationspolveders)

- ▶ Punkt: mindestens ein Punkt bleibt fest
- ▶ Gruppe: Die Symmetrieoperationen erfüllen bzgl. der Verknüpfung Hintereinanderausführen (○) ¹ die Bedingungen einer mathematischen Gruppe:
 - ① Eine Gruppe ist eine Menge \mathfrak{G} von Elementen g_i , zwischen denen eine Verknüpfung besteht, so dass jedem geordneten Paar g_i , g_j genau ein Element $g_k \in \mathfrak{G}$ zugeordnet ist. (Abgeschlossenheit)
 - 2 Die Verknüpfung ist assoziativ, es gilt

$$(g_i \circ g_j) \circ g_k = g_i \circ (g_j \circ g_k)$$

3 Es gibt ein Neutralelement e für das gilt:

$$e \circ g_i = g_i \circ e = g_i$$
 für alle $g_i \in \mathfrak{G}$

 $oldsymbol{0}$ Für alle Elemente g gibt es ein Inverses Element g^{-1} für das gilt:

$$g \circ g^{-1} = g^{-1} \circ g = e$$

Kristallklassen: kristallographische Punktgruppen (nur Drehachsen 1, 2, 3, 4, 6)

Einleitung

Symmetrie-Elemente

Klassifizierung

I: Rotationen
II: Spiegelung

III: Inversion

Stereographische Projektion IV: Zusammenge-

setzte S.O.

Punktgruppen

Basics

Nomenklatur

Übersicht kristal-

lographische PG P.G. und

physikalische Eigenschaften

^{2.} Punktgruppen, Kristallklassen

 $^{^1}$ bzw. Multiplikation der $3\!\times\!3\text{-Transformationsmatrizen}$

Punktgruppe = Sammlung von Symmetrie-Operationen eines Objektes (z.B. eines Moleküls, Kristalls oder Koordinationspolveders)

- ▶ Punkt: mindestens ein Punkt bleibt fest
- ▶ Gruppe: Die Symmetrieoperationen erfüllen bzgl. der Verknüpfung Hintereinanderausführen (○) ¹ die Bedingungen einer mathematischen Gruppe:
 - ① Eine Gruppe ist eine Menge $\mathfrak G$ von Elementen g_i , zwischen denen eine Verknüpfung besteht, so dass jedem geordneten Paar g_i , g_j genau ein Element $g_k \in \mathfrak G$ zugeordnet ist. (Abgeschlossenheit)
 - 2 Die Verknüpfung ist assoziativ, es gilt

$$(g_i \circ g_j) \circ g_k = g_i \circ (g_j \circ g_k)$$

3 Es gibt ein Neutralelement e für das gilt:

$$e \circ g_i = g_i \circ e = g_i$$
 für alle $g_i \in \mathfrak{G}$

 $oldsymbol{0}$ Für alle Elemente g gibt es ein Inverses Element g^{-1} für das gilt:

$$g \circ g^{-1} = g^{-1} \circ g = e$$

Kristallklassen: kristallographische Punktgruppen (nur Drehachsen 1, 2, 3, 4, 6)

Laueklassen: Kristallklassen mit Inversionszentrum

Einleitung

Symmetrie-Elemente

Klassifizierung

I: Rotationen
II: Spiegelung

III: Inversion

Stereographische Projektion IV: Zusammenge-

setzte S.O.
Punktgruppen

Basics

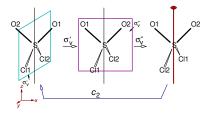
Nomenklatur

Übersicht kristal-

lographische PG

P.G. und physikalische Eigenschaften

^{2.} Punktgruppen, Kristallklassen


 $^{^1\,}$ bzw. Multiplikation der $3\!\times\!3\text{-Transformationsmatrizen}$

Gruppentheorie: Beispiel einer Gruppentafel

• Gruppentafel von $C_{2n} = mm2$

- 1			- 20	
0	E	C_2	σ'_v	$\sigma_v^{\prime\prime}$
E	E	C_2	σ_v'	$\sigma_v^{\prime\prime}$
C_2	C_2	E	$\sigma_v^{\prime\prime}$	σ_v'
σ_v'	σ_v'	$\sigma_v^{\prime\prime}$	E	C_2
$\sigma_v^{\prime\prime}$	$\sigma_v^{\prime\prime}$	σ_v'	C_2	E

▶ am Beispiel des Moleküls SO₂Cl₂:

► Matrizen-Multiplikation

$$\underbrace{\begin{pmatrix}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}}_{\sigma'_{v}} \underbrace{\begin{pmatrix}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{pmatrix}}_{\sigma''_{v}} = \underbrace{\begin{pmatrix}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{pmatrix}}_{C_{2}}$$

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente

Klassifizierung

I: Rotationen II: Spiegelung

Punktgruppen

Basics

Nomenklatur

Übersicht kristallographische PG

P.G. und physikalische Eigenschaften

Gruppentheorie, angewand
t \dots

... in der Molekülchemie

Def. Die Molekülsymmetrie bildet eine Gruppe, welche die Punktgruppe $\mathfrak P$ des Moleküls genannt wird.

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente

Klassifizierung

I: Rotationen

II: Spiegelung

III: Inversion

Stereographische Projektion IV: Zusammengesetzte S.O.

Punktgruppen

Basics

Nomenklatur

Übersicht kristal-

lographische PG P.G. und physikalische Eigenschaften

Gruppentheorie, angewandt ...

... in der Molekülchemie

Def. Die Molekülsymmetrie bildet eine Gruppe, welche die Punktgruppe $\mathfrak P$ des Moleküls genannt wird.

... in der Kristallchemie/Kristallographie

- Def. Die Punktgruppe $\mathfrak P$ einer Kristallstruktur ist die Symmetriegruppe des Bündels der Flächennormalen.
- Def. Die Menge aller Symmetrieoperationen (Isometrien) einer Kristallstruktur heißt die Raumgruppe & dieser Kristallstruktur. & ist eine unendliche Gruppe.

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente

${\bf Klassifizierung}$

I: Rotationen

II: Spiegelung

III: Inversion Stereographische

Projektion IV: Zusammenge-

setzte S.O.

Punktgruppen

Basics

Nomenklatur

Übersicht kristallographische PG

P.G. und physikalische

Eigenschaften Beispiele

Gruppentheorie, angewandt ...

2. Punktgruppen, Kristallklassen

... in der Molekülchemie

Def. Die Molekülsymmetrie bildet eine Gruppe, welche die Punktgruppe P des Moleküls genannt wird.

... in der Kristallchemie/Kristallographie

- Def. Die Punktgruppe

 geiner Kristallstruktur ist die Symmetriegruppe des Bündels der Flächennormalen.
- Def. Die Menge aller Symmetrieoperationen (Isometrien) einer Kristallstruktur heißt die Raumgruppe & dieser Kristallstruktur. Ø ist eine unendliche Gruppe.

... für beide: 'lokale' Punktsymmetrie

- Def. Die Menge aller Symmetrieoperationen einer Punkt/Raum-Gruppe. welche einen Punkt festlassen, heißt die Lagesymmetriegruppe S (Stabilisator) dieses Punktes.
 - S ist eine Untergruppe von \$\mathfrak{P}\$ bzw. \$\mathfrak{G}\$.
 - ▶ Punkte allgemeiner Lage: S = I

Einleitung

Symmetrie-Elemente

Klassifizierung

I: Botationen

II: Spiegelung III: Inversion

Stereographische Projektion

IV: Zusammengesetzte S.O.

Punktgruppen

Basics

Nomenklatur

Übersicht kristallographische PG

P.G. und physikalische Eigenschaften

- ① Einleitung
- 2 Symmetrie-Elemente/Operationen

Definitionen, Nomenklatur, Klassifizierung

I: Rotationen (SO) /Drehachsen (SE)

II: Spiegelung (SO) / Spiegelebene (SE)

III: Inversion (SO) / Inversionszentrum (SE)

Einschub: Stereographische Projektion

IV: Zusammengesetzte Symmetrieoperationen

3 Punktgruppen (2D/3D)

Rasics

Nomenklatur

Übersicht kristallographische Punktgruppen (2D/3D) Punktgruppen und physikalische Eigenschaften (Polarisation

Beispiele: Moleküle, Kristall/Koordinations-Polyeder

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente

Klassifizierung

I: Rotationen

II: Spiegelung

III: Inversion
Stereographische

Projektion

IV: Zusammengesetzte S.O.

Punktgruppen

Basics

Nomenklatur

Übersicht kristallographische PG

P.G. und physikalische Eigenschaften

Nomenklatur I: Schönflies (Vorlage 2.4)

- ▶ Bezugssystem mit vertikaler Hauptachse (z-Achse)
- ▶ grosser Buchstabe mit kleinen Zahlen/Buchstaben
- ▶ große Buchstaben:
 - C zyklische Gruppe, nur eine Drehachse
 - D Diedergruppe: senkrecht zur Hauptachse weitere 2-zählige Achsen
 - S Drehspiegelachsen alleine
- T,O,I Tetraeder-, Oktaeder- oder Ikosaeder-Symmetrie
- ▶ kleine Indizes: Orientierung weiterer Symmetrieelemente
 - h horizontale Spiegelebene
 - v vertikale Spiegelebene
 - d diagonale Spiegelebene
 - i Inversionszentrum alleine
 - s Spiegelebene alleine

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente

Klassifizierung

I: Rotationen

II: Spiegelung

III: Inversion
Stereographische

Projektion

IV: Zusammengesetzte S.O.

Punktgruppen

Basics

Nomenklatur

Übersicht kristallographische PG

P.G. und physikalische Eigenschaften

Nomenklatur I: Schönflies (Vorlage 2.4)

- ▶ Bezugssystem mit vertikaler Hauptachse (z-Achse)
- ▶ grosser Buchstabe mit kleinen Zahlen/Buchstaben
- ▶ große Buchstaben:
 - C zyklische Gruppe, nur eine Drehachse
 - D Diedergruppe: senkrecht zur Hauptachse weitere 2-zählige Achsen
 - S Drehspiegelachsen alleine
- T,O,I Tetraeder-, Oktaeder- oder Ikosaeder-Symmetrie
- ▶ kleine Indizes: Orientierung weiterer Symmetrieelemente
 - h horizontale Spiegelebene
 - v vertikale Spiegelebene
 - d diagonale Spiegelebene
 - i Inversionszentrum alleine
 - s Spiegelebene alleine

Beispiel: Rutil-Kristall: • (und viele andere hier)

► Rutil im Mineralienatlas

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente

Klassifizierung

I: Rotationen

II: Spiegelung

III: Inversion

Stereographische Projektion

IV: Zusammengesetzte S.O.

Punktgruppen

Basics

Nomenklatur

Übersicht kristallographische PG

P.G. und physikalische Eigenschaften

- ► Symmetrieelemente, auf bestimmte Richtungen eines KS bezogen (bis zu 3 Bezeichnungs- oder Blickrichtungen)
- ► Einzelbezeichnungen (für jede Blickrichtung)
 - n die Richtung enthält eine n-zählige Drehachse
 - \bar{n} die Richtung enthält eine n-zählige Drehinversionsachse
 - $m \perp$ zur Richtung verläuft eine Spiegelebene
 - $\frac{n}{m}$ die Richtung enthält eine $n\text{-}\mathrm{z\ddot{a}hlige}$ Drehachse mit senkrechter Spiegelebene

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente

Klassifizierung

I: Rotationen

II: Spiegelung

III: Inversion

Stereographische Projektion

IV: Zusammengesetzte S.O.

Punktgruppen

Basics

Nomenklatur

Übersicht kristallographische PG

P.G. und physikalische Eigenschaften

- 2. Punktgruppen, Kristallklassen
- Einleitung
- Symmetrie-Elemente
- Klassifizierung
- I: Rotationen
- II: Spiegelung
- III: Inversion Stereographische
- Projektion

 IV: Zusammenge-
- setzte S.O.
- Punktgruppen

Basics

Nomenklatur

Übersicht kristallographische PG

P.G. und physikalische Eigenschaften

Beispiele

- Symmetrieelemente, auf bestimmte Richtungen eines KS bezogen (bis zu 3 Bezeichnungs- oder Blickrichtungen)
- ► Einzelbezeichnungen (für jede Blickrichtung)
 - n die Richtung enthält eine n-zählige Drehachse
 - \bar{n} die Richtung enthält eine n-zählige Drehinversionsachse
 - $m \perp zur$ Richtung verläuft eine Spiegelebene
 - $\frac{n}{m}$ die Richtung enthält eine $n\text{-}\mathrm{z\ddot{a}hlige}$ Drehachse mit senkrechter Spiegelebene
- ► HERMANN-MAUGUIN-Symbole
 - ▶ H.-M.-Langsymbol: alle SE bzgl. dieser Richtungen werden genannt
 - H.-M.-Kurzsymbol: Achsen, die sich aus bereits genannten SE ergeben, bleiben ungenannt

(z.B. $\frac{4}{m}\frac{2}{m}\frac{2}{m}=\frac{4}{m}mm=4/mmm$)

(bis zu 3) Bezeichnungs/Blick-Richtungen

▶ eine Achse höchster Zähligkeit (nicht kubisch)

Blickrichtungen:

- z Achse höchster Zähligkeit ("Hauptachse", analog Schönflies)
- $x \perp z$

!!das SE (2 bzw. m) in xkommt noch in weiteren Richtungen x^\prime vor, weil es durch die höherzählige Achse in zvervielfacht wird

d zwischen x und der nächsten zu ihr symmetrieäquivalenten Richtung x'

Beispiel: Rutil-Kristall: • (und viele andere hier)

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente

Licinonic

Klassifizierung I: Rotationen

II: Spiegelung

III: Inversion

Stereographische Projektion

IV: Zusammengesetzte S.O.

Punktgruppen

Basics

Nomenklatur

Übersicht kristallographische PG

P.G. und physikalische Eigenschaften

(bis zu 3) Bezeichnungs/Blick-Richtungen

▶ eine Achse höchster Zähligkeit (nicht kubisch)

Blickrichtungen:

```
z Achse höchster Zähligkeit ("Hauptachse", analog Schönflies)
```

 $x \mid z$

!! das SE (2 bzw. m) in x kommt noch in weiteren Richtungen x' vor, weil es durch die höherzählige Achse in z vervielfacht wird

d zwischen x und der nächsten zu ihr symmetrie
äquivalenten Richtung x'

Beispiel: Rutil-Kristall: • (und viele andere hier)

▶ <u>kubische</u> Punktgruppen (mehrere Achsen höherer Zähligkeit) vier 3-zählige Achsen (Raumdiagonalen eines Würfels: x + y + z, ..) Blickrichtungen:

z Kanten des Würfels

 $x+y+z\,$ Raumdiagonalen des Würfels

x + y Flächendiagonalen des Würfels

Beispiel: Oktaeder oder Würfel oder Tetraeder

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente

Klassifizierung

I: Rotationen

II: Spiegelung

III: Inversion

Stereographische Projektion

IV: Zusammengesetzte S.O.

Punktgruppen

Basics

Nomenklatur

Übersicht kristallographische PG

P.G. und physikalische Eigenschaften

Beispiel für eine Hauptachse: Rutil-Kristall

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente

Klassifizierung

I: Rotationen

II: Spiegelung

III: Inversion

Stereographische Projektion

IV: Zusammengesetzte S.O.

Punktgruppen

Basics

Nomenklatur

Übersicht kristallographische PG

P.G. und physikalische Eigenschaften

Beispiele für kubische Gruppen: Würfel – Oktaeder, Tetraeder

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente

Klassifizierung I: Rotationen

II: Spiegelung

III: Inversion

Stereographische

Projektion IV: Zusammengesetzte S.O.

Punktgruppen

. - -

Basics

Nomenklatur

Übersicht kristallographische PG

P.G. und physikalische Eigenschaften

Nomenklatur III: Nomenklatur nach GROTH

- ▶ in den Geowissenschaften eigene Bezeichnungen eingeführt
- ► nach Paul Heinrich Ritter von Groth
- ► z.B.
 - ightharpoonup monoklin-domatisch = $1m1 = C_s$
 - ightharpoonup ditrigonal-pyramidal = $3m1 = C_{3v}$
 - hexakistetraedrisch = $\bar{4}3m = T_d$

Paul Heinrich Ritter von Groth (1843-1927)

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente

Klassifizierung

I: Rotationen

II: Spiegelung

Stereographische

Projektion IV: Zusammenge-

setzte S.O.

${\bf Punktgruppen}$

Basics

Nomenklatur

Übersicht kristallographische PG

> P.G. und physikalische Eigenschaften

① Einleitung

2 Symmetrie-Elemente/Operationen

Definitionen, Nomenklatur, Klassifizierung

I: Rotationen (SO) /Drehachsen (SE)

II: Spiegelung (SO) / Spiegelebene (SE)

III: Inversion (SO) / Inversionszentrum (SE)

Einschub: Stereographische Projektion

IV: Zusammengesetzte Symmetrieoperationen

3 Punktgruppen (2D/3D)

Basics

Nomenklatu

Übersicht kristallographische Punktgruppen (2D/3D)

Punktgruppen und physikalische Eigenschaften (Polarisation

4 Beispiele: Moleküle, Kristall/Koordinations-Polyeder

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente

Klassifizierung

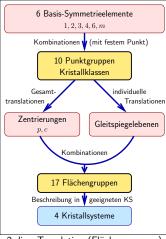
I: Rotationen

II: Spiegelung

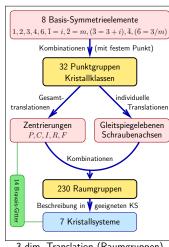
III: Inversion

Stereographische Projektion IV: Zusammenge-

setzte S.O.
Punktgruppen


Basics

Nomenklatur


Übersicht kristallographische PG

P.G. und physikalische Eigenschaften

Wdh. der Übersicht zu kristallographischen Symmetrien

2-dim. Translation (Flächengruppen)

3-dim. Translation (Raumgruppen)

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente

Klassifizierung

I: Botationen II: Spiegelung

III: Inversion

Stereographische Projektion

IV: Zusammengesetzte S.O.

Punktgruppen

Basics

Nomenklatur

Übersicht kristallographische PG

P.G. und physikalische Eigenschaften

Übersicht 2D-Punktgruppen (Vorlage 2.5)

- \blacktriangleright mit Translation vereinbare SE \mapsto 1, 2, 3, 4, 6 und m
- ▶ Hauptachse senkrecht zur Ebene (z ist 3. Dimension)
- ▶ Bezeichnungsrichtungen: z, x, d ($z \perp$ Ebene)
- ▶ Kombination zu 10 Punktgruppen, in 4 Koordinatensystemen, danach geordnet ↓

Nr.	HERMANN-	Schön-	Koordinaten-	Nr.	HERMANN-	Schön-	Koordinaten-
	Mauguin	FLIES-	System		Mauguin flii		System
	Symbol				Symbol		
1	1	C_1	schiefwinklig	5	411	C_4	quadratisch
2	2	C_2	$(a \neq b;$ $\gamma \text{ beliebig})$	6	4mm	C_{4v}	$(a=b;\gamma=90^\circ)$
			γ beliebig)	7	311	C_3	hexagonal
3	1m1	C_m	rechtwinklig	8	3m1	C_{3v}	a = b;
4	2mm	C_{2v}	$(a \neq b;$	9	611	C_6	$\gamma=120^{\circ}$
			$(a \neq b; \gamma = 90^{\circ})$	10	6mm	C_{6v}	

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente

Klassifizierung

I: Rotationen
II: Spiegelung

III: Inversion

Stereographische Projektion

IV: Zusammengesetzte S.O.

Punktgruppen

Basics

Nomenklatur

Übersicht kristallographische PG

P.G. und physikalische Eigenschaften

Übersicht 3D-Punktgruppen (Vorlage 2.5)

- \blacktriangleright mit Translationssymmetrie vereinbare SE: \mapsto 1, 2, 3, 4, 6, $\bar{1},\,\bar{2}{=}m$ und $\bar{4}$
 - □ !! statt $\frac{3}{m}$ wird i. A. $\bar{6}$ verwendet !! (Bsp: Prismen) □ !! $\bar{3}$ ist für (3 + Inversion) in Gebrauch !! (Bsp: Antiprismen)
- ► Kombination zu 32 Punktgruppen = Kristallklassen
- ▶ in 7 Koordinatensystemen (Kristallsystemen)
- ▶ geordnet nach KS ↓

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente

Klassifizierung I: Rotationen

II: Spiegelung

III: Inversion

Stereographische Projektion

IV: Zusammengesetzte S.O.

Punktgruppen

Punktgruppe

Basics

Nomenklatur

Übersicht kristal-

P.G. und

Eigenschaften

Übersicht 3D-Punktgruppen (Vorlage 2.5)

2.	Pυ	ınktgrup-
pe	n,	${\bf Kristall-}$
	1-1	laccon

Nr	Нерман	IN MALICUIN	SCHÖN	Koordinaten-	Nr	Hedman	IN MALICIUM	SCHÖN	Koordinaten-
111					111.				
	Kurz-	Lang-	FLIES-	system		Kurz-	Lang-	FLIES-	system
		symbol		(Kristallsystem)			symbol		(Kristallsystem)
1	1	1	C_1	triklin	16	3	3	C_3	trigonal
2	$\bar{1}$	ī	C_i	$(a \neq b \neq c;$	17	$\bar{3}$	$\bar{3}$	S_6	(hexagonale A.)
				$\alpha \neq \beta \neq \gamma$)	18	3m1	3m1	C_{3v}	$(a = b \neq c;$
3	m	1m1	C_s	monoklin	19	321	321	D_3	$\alpha = \beta = 90^{\circ};$
4	2	121	C_2	$(a \neq b \neq c;$	20	$\bar{3}m1$	$\bar{3} \frac{2}{m} 1$	D_{3d}	$\gamma = 120^{\circ}$)
5	$\frac{2}{m}$	$1 \frac{2}{m} 1$	C_{2h}	$\alpha = \gamma = 90^{\circ}; \beta \neq 90^{\circ})$	21	6	6	C_6	hexagonal
6	mm2	mm2	C_{2v}	orthorhombisch	22	6	$\bar{6}$	C_{3h}	$(a = b \neq c;$
7	222	222		$(a \neq b \neq c;$	23	6 m	6 m	C_{6h}	$\alpha = \beta = 90^{\circ};$
8	mmm	$\frac{2}{m}$ $\frac{2}{m}$ $\frac{2}{m}$	D_{2h}	$\alpha = \beta = \gamma = 90^{\circ})$	24	$\bar{6}m2$	$\bar{6}m2$	D_{3h}	$\gamma = 120^{\circ}$)
					25	6mm	6mm	C_{6v}	
9	4	4	C_4	tetragonal	26	622	622	D_6	
10	$\bar{4}$	$\bar{4}$	S_4	$(a=b\neq c;$	27	$\frac{6}{m}mm$	$\frac{6}{m}$ $\frac{2}{m}$ $\frac{2}{m}$	D_{6h}	
11	$\frac{4}{m}$	$\frac{4}{m}$	C_{4h}	$\alpha = \beta = \gamma = 90^{\circ}$)	28	23	23	T	kubisch
12	4mm	4mm	C_{4v}		29	$m\bar{3}$	$\frac{2}{m}\bar{3}$	T_h	(a=b=c;
13	$\bar{4}2m$	$\bar{4}2m$	D_{2d}		30	$\bar{4}3m$	$\bar{4}3m$	T_d	$\alpha = \beta = \gamma = 90^{\circ}$)
14	422	422	D_4		31	432	432	0	
15	$\frac{4}{m}mm$	$\frac{4}{m} \frac{2}{m} \frac{2}{m}$	D_{4h}		32	$m\bar{3}\mathrm{m}$	$\frac{4}{m}\bar{3}\frac{2}{m}$	O_h	

Einleitung

Symmetrie-Elemente

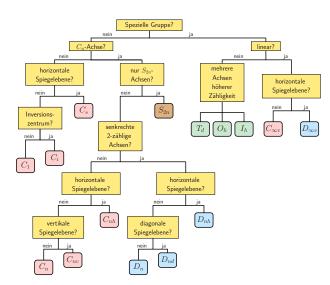
Elemente Klassifizierung

I: Rotationen
II: Spiegelung

III: Inversion

Stereographische Projektion IV: Zusammenge-

setzte S.O.
Punktgruppen


Basics Nomenklatur

Übersicht kristal-

lographische PG P.G. und physikalische

Eigenschaften

Schema zur Punktgruppenbestimmung (Vorlage 2.5)

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente

Klassifizierung

I: Rotationen

II: Spiegelung

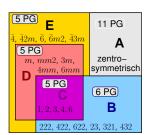
III: Inversion

Stereographische Projektion

IV: Zusammengesetzte S.O.

Punktgruppen

. .


Basics

Nomenklatur

Übersicht kristallographische PG

P.G. und physikalische Eigenschaften

Punktgruppen und Polarisations-Eigenschaften

A: 11 zentrosymmetrische PG (mit 1)

▶ für Polarisations-Eigenschaften uninteressant

B+C+D+E: 21 azentrische PG (ohne $\bar{1}$)

▶ davon 20 (ohne 432) piezoelektrisch

B+C+D: (ohne 432): 15 PG mit polarer Achse

- \blacktriangleright kein i oder $m \perp zur$ Drehachse
- ▶ Drehung der Polarisationsebene des polarisierten Lichts (optisch aktiv)

B+C 11 PG ohne SE 2. Art $(m \text{ oder } \bar{1})$

▶ PG für enantiomerenreine chirale Moleküle

C+D 10 PG ohne 222 als Untergruppe

- ▶ pyroelektrisch
- kann ferroelektrisch sein (bei Strukturen mit umkehrbarer Polarisation)

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente

Klassifizierung

I: Rotationen
II: Spiegelung

III: Inversion

Stereographische Projektion

IV: Zusammengesetzte S.O.

Punktgruppen

Basics

Nomenklatur

Übersicht kristallographische PG

P.G. und physikalische Eigenschaften

① Einleitung

2 Symmetrie-Elemente/Operationen

Definitionen, Nomenklatur, Klassifizierung

I: Rotationen (SO) /Drehachsen (SE)

II: Spiegelung (SO) / Spiegelebene (SE)

III: Inversion (SO) / Inversionszentrum (SE)

Einschub: Stereographische Projektion

IV: Zusammengesetzte Symmetrieoperationen

3 Punktgruppen (2D/3D)

Basics

Nomenklatu

Übersicht kristallographische Punktgruppen (2D/3D)

Punktgruppen und physikalische Eigenschaften (Polarisation

4 Beispiele: Moleküle, Kristall/Koordinations-Polyeder

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente

Klassifizierung

I: Rotationen

II: Spiegelung

III: Inversion
Stereographische

Projektion

IV: Zusammengesetzte S.O.

Punktgruppen

Basics

Nomenklatur

Übersicht kristallographische PG

P.G. und physikalische Eigenschaften

Beispiele und Übung

- ▶ nach Schönflies geordnet, s.a. Web-Seiten
 - Vorlage 2.6 (Punktgruppen C_{nv})
 - ▶ Vorlage 2.7 (Punktgruppen C_{nh})
 - Vorlage 2.8 (Punktgruppen D_n)
 - ▶ Vorlage 2.9 (Punktgruppen D_{nh})
 - Vorlage 2.10 (Punktgruppen D_{nh} und S_n)
 - ▶ Vorlage 2.11 (Tetraeder- und Oktaedergruppen)
- ▶ und jetzt in der Polyeder-Übung

2. Punktgruppen, Kristallklassen

Einleitung

Symmetrie-Elemente

Klassifizierung

I: Rotationen
II: Spiegelung

III: Inversion
Stereographische

Projektion

IV: Zusammenge-

setzte S.O.

Punktgruppen

Basics

Nomenklatur

Übersicht kristallographische PG

P.G. und physikalische Eigenschaften

Reispiele