3.3.3. Supraleiter

3. Eigenschaften und Anwendungen von Festkörpern

Caroline Röhr

Vorlesung: Festkörper-Chemie, SS 2022

- 1. Bau von Festkörpern: Atomare und elektronische Strukturen 🗸
- 2. Reaktionen und Synthesen von Festkörpern 🗸
- 3. Eigenschaften und Anwendungen von Festkörpern
 - 3.1. Übersicht \checkmark
 - 3.2. Polarisationseffekte (statischer Response)
 - 3.2.1. Dielektrika 🖌
 - **3.2.2.** Magnetmaterialien (AGP/AC-III)
 - 3.3. Transporteffekte (dynamischer Response)
 - 3.3.1. Metalle (QM-Kurs)
 - 3.3.2. Halbleiter (QM-Kurs)
 - **3.3.3.** Supraleiter ▶
 - 3.3.4. Ionenleiter
 - 3.4. Optische Eigenschaften

イロト 不問 とうほう 不良 とう

- A. R. West: Solid state chemistry and it's application, 2. Aufl., Wiley, 2014 (Kap. 8.3.)
- R. D. Tilley: Understanding solids: The science of materials, 3. Aufl., Wiley, 2021 (Kap. 11.5.)
- W. D. Callister, R. W. Rethwisch, Fundamentals of Materials Science and Engineering. An integrated approach, 5. Ed., 2015. (Kap. 18.12.)

イロト 不同 とくほと 不良 とう

- 1 Einleitung, Historisches
- 2 Physikalische Eigenschaften (Messungen)
- 3 Theoretische Beschreibungen
- 4 Anwendungen

6 Konventionelle Supraleiter (Metalle und Legierungen)

Elemente

Legierungen

Interstitielle feste Lösungen

Oxido-Cuprate (High-T_c-Materialien) Die Stammverbindungen La₂CuO₄ und Nd₂CuO₄ YBCO/123-Supraleiter Weitere Varianten

 Sonstige (neuere) Materialklassen CHEVREL-Phasen MgB₂
 Fe-basierte Supraleiter (IBSC) Superhydride

イロト イボト イヨト イヨト 三日

	Gradient ∇X				
$\mathrm{Flu} \mathfrak{B} \Downarrow J_Y$	$\nabla T [\mathrm{K/m}]$	$\nabla p \; [\mathrm{kg/m^2 s^2}]$	$\nabla N_v \ [\mathrm{m}^{-4}]$	$\nabla U, \vec{E} [V/m]$	
Wärme \dot{Q}	Wärmeleitung	mechanokalorischer Effekt	Diffusionswärme	Peltier-Efffekt bzw. 2. Benedicks-Effekt	
$[\mathrm{J/m^2 s}]$	$\frac{dQ}{dt} = -\lambda A \frac{dT}{dz}$				
Masse \dot{m}	thermomechanischer Effekt	Massetransport	Diffusionsdruck		
$[\mathrm{kg/m^2s}]$		$\frac{dm}{dt} = \frac{\text{konst.}}{\eta} \frac{dp}{dz}$ (Viskosität)			
		HAGEN-POISEUILLE'sches Gesetz			
Teilchen-	Thermodiffusion	Druckdiffusion	Diffusion	Elektrophorese	
$_{[\mathrm{m}^{-2}\mathrm{s}^{-1}]}^{\mathrm{zahl}}\dot{N}$			$\frac{dN}{dt} = -DA\frac{dN}{dz}$ (Diffusionskoeffizient)		
			1. FICK'sches Gesetz		
Ladung \dot{q}	SEEBECK-Effekt bzw. 1. BENEDICKS-Effekt		Strömungsstrom	Elektrizitätsleitung	
$[A/m^2]$				$\frac{dq}{dt} = -\sigma A \frac{dU}{dz}$ (elektrische Leitfähigkeit)	
				Ohm'sches Gesetz	

æ

・ロト ・回 ト ・ヨト ・ヨト

Elektrische Leitfähigkeiten: Übersicht

▶ elektrische Leitfähigkeit (OHM'sches Gesetz)

$\mathbf{j}_q = -\sigma \mathbf{g} \mathbf{i}$	rad <i>U</i> b	zw. $\frac{\mathrm{d}q}{\mathrm{d}t} = -$	$\sigma A \frac{\mathrm{d}U}{\mathrm{d}x}$ mit	$\sigma = \frac{1}{\rho} = \Sigma_i N_i e\mu$
Klasse		Material/ Element	spezifischer elektr. Widerstand ρ [Ω m] bei 25°C	Bandlücke E_g [eV] bei 0 K
Leiter 1. Klasse	Metalle	Cu Li	$\frac{1.7 \cdot 10^{-8}}{8.6 \cdot 10^{-8}}$	keine keine
	Halb- metalle	As Bi C (Graphit)	$3.5 \cdot 10^{-7}$ $1.2 \cdot 10^{-6}$ $0.8 \cdot 10^{-5}$	0 0 0
Leiter 2. Klasse	Halb- leiter	Te Ge Si GaAs CdS	$2 \cdot 10^{-3} \\ 0.47 \\ 2.3 \cdot 10^3 \\ 10^6$	$\begin{array}{c} 0.33 \\ 0.66 \\ 1.12 \\ 1.42 \\ 2.582 \end{array}$
	Nicht- metalle	Glas S_8 C (Diamant)	$ \begin{array}{r} 10^9 \\ 10^{15} \\ 10^{12} \\ \hline $	> 3 2.61 5.4

6 / 65

Elektrische Leitfähigkeiten: Basics, T-Abhängigkeit

▶ (Eigen)Halbleiter: Elektronen- und Lochbeiträge

$$\sigma_i = en_i(\mu_e + \mu_h)$$

- Leitfähigkeit bestimmt durch Zahl n_i der Ladungsträger
- wegen $T\text{-}\mathrm{Abhängigkeit}$ von $n_i\mapsto \mathrm{direkt}$ abhängig von Bandlücke
- Leiter 2. Klasse \Rightarrow
- in der Praxis: gesteuert durch Dotierung
- ► Metalle:
 - alle Valenzelektronen n tragen zur Leitfähigkeit bei

(

• für die Beweglichkeit* $\mu = \frac{e\tau}{m_e}$ gilt

$$\sigma = \frac{ne^2\tau}{m_e}$$

- T-Abhängigkeit wird durch $\tau(T)$ (Stosszeit) bestimmt
- erklärt T-Abhängigkeit von $\sigma \Rightarrow$
- ▶ Supraleiter \Rightarrow

イロト 不同 とくほと 不良 とう

1 Einleitung, Historisches

- 2 Physikalische Eigenschaften (Messungen)
- 8 Theoretische Beschreibungen
- Anwendungen
- (a) Konventionelle Supraleiter (Metalle und Legierungen)
 - Elemente
 - Legierungen
 - Interstitielle feste Lösungen
- Oxido-Cuprate (High-T_c-Materialien) Die Stammverbindungen La₂CuO₄ und Nd₂Cu YBCO/123-Supraleiter Weitere Varianten
- Sonstige (neuere) Materialklassen CHEVREL-Phasen MgB₂
 Fe-basierte Supraleiter (IBSC) Superhydride

臣

イロト 不同ト 不同ト 不同ト

Historisches I

- < 1986: Low-T_c, konventionelle Supraleiter
 1911: Supraleitfähigkei von Hg
 - HEIKE KAMMERLINGH ONNES (Leiden, NL)
 - steiler Abfall des Widerstands ρ auf 0 bei $T_{\rm c}$ = 4.183 K \Rightarrow
 - 1911 auf Solvay-Meeting vorgestellt, 1913 publiziert¹
 - ... Untersuchung vieler Metalle und Legierungen 1950: A15-Phasen, Rekord für Low- $T_{\rm c}$ s: Nb₃Ge, $T_{\rm c} = 23.2$ K
 - 1959: BSC-Theorie

$\blacktriangleright\,>$ 1986: High- $T_{\rm c}$ Suprale
iter, Oxido
cuprate

- 1986: neue Substanzklasse, eingeführt von JOHANNES BEDNORZ, KARL ALEX MÜLLER (IBM Forschungszentrum Zürich, Physik-Nobelpreis 1987².)
 - Ausgangspunkt: La_{1.8} Ba_{0.2} CuO_4 mit $T_{\rm c}=36~{\rm K}$
 - kurz danach: YBCO (1-2-3-SL) mit $T_c = 92 \text{ K}$ (!! erstmals > 77 K, d.h. > N₂-Siedepunkt)
 - Auslöser für 1000-sende von Publikationen
 - Rekord bei Normaldruck: $\rm Hg_{0.8}Tl_{0.2}Ba_{2}Ca_{2}Cu_{3}O_{8.33}:$ 138 K; –135 °C
- $\blacktriangleright\,>$ 2000: neue Substanzklassen

3.3.3. Supraleiter

¹ Commun. Phys. Univ. Leiden, **133** (1913); ² Z. Physik **B64**, 189 (1986); → (=) (=) (=) (⊂) (⊂)

- ▶ < 1986: Low- T_c , konventionelle Supraleiter
- ▶ > 1986: High- T_c Supraleiter, Oxidocuprate
- $\blacktriangleright\,>$ 2000: neue Substanzklassen
 - z.B. Kupfer-frei, Eisen-haltig, Hochdruckphasen
- 2001: MgB₂ mit $T_c = 39$ K
- 2008: Eisen-basierte Supraleiter (IBSC)
 - FeSe
 - LnFeAsO
 - Fe-Arsenide $A_x^{\text{I}} A_{1-x}^{\text{II}} [\text{Fe}_2 \text{As}_2]$
- 2015: Hydride unter sehr hohem Druck
 - H₃S
 - Ln-'Super'hydride
 - CSH-Phasen

æ

Historisches: Grafisch

Verbindung	$T_{\rm c}$ [K]	$H_{\rm c}$ [T]	Verbindung	$T_{\rm c} [{\rm K}]$
Hg	4.15	0.0411	$YBa_2Cu_3O_{7-x}$ (YBCO)	93
Nb	9.26	0.198	$YBa_2Cu_4O_{8+x}$	80
NbN	15.7	1.5	$\operatorname{Bi}_{2+x}(\operatorname{Sr}_{\mathbf{C}}\mathbf{a})_{3}\operatorname{Cu}_{3}\operatorname{O}_{7-x}$	110
NbTi	9.6	12	$Tl_2Ba_2Ca_2Cu_2O_{10}$ (TBCCO)	125
$Pb[Mo_6S_8]$	14.4	45	$HgBa_2Ca_2Cu_3O_8$ (Hg1223)	130
K_3C_{60}	18.0		$La_{1.8}Ba_{0.2}CuO_4$ (LBCO)	40
Nb_3Sn	18.05	22		
Nb_3Ge	23.2	30	$H_{3}S$ (150 GPa)	200
MgB_2	39	200	${\rm LaH_{10}}$ (190 GPa)	260

æ

・ロト ・ 日 ト ・ モ ト ・ モ ト

1 Einleitung, Historisches

2 Physikalische Eigenschaften (Messungen)

- 3 Theoretische Beschreibungen
- Anwendungen

(a) Konventionelle Supraleiter (Metalle und Legierungen)

Elemente

Legierungen

Interstitielle feste Lösungen

Oxido-Cuprate (High-T_c-Materialien) Die Stammverbindungen La₂CuO₄ und Nd₂Cu YBCO/123-Supraleiter Weitere Varianten

 Sonstige (neuere) Materialklassen CHEVREL-Phasen MgB₂
 Fe-basierte Supraleiter (IBSC) Superhydride

イロト 不同 とうほう 不同 とう

- \triangleright < $T_{\rm c}$ Abnahme von ρ auf 0
- $> T_{\rm c}$ metallische Leiter
- d.h. in Ringleiter endlos (etwa 100000 Jahre) fließender Strom induzierbar
- \blacktriangleright Anwendung: widerstandsloser Stromtransport

(人) 臣() (人) 臣()

A D > A D >

- ▶ supraleitender Zustand = höherer Ordnungszustand
- ► SL→normalleitend \mapsto Phasenübergang 2. Ordnung (keine Diskontinuitäten in ΔH oder ΔS)
- \blacktriangleright aber messbar über Sprung in der Wärmekapazität c_p
- \blacktriangleright Entropie S sinkt stärker als bei normalen Metallen
- damit auch geringere freie Energie

A B N A B N

3 magnetische Eigenschaften

- \blacktriangleright Supraleiter \mapsto perfekte Diamagnete
- \blacktriangleright \mapsto Meissner-Ochsenfeld-Effekt
 - Leviatation/'Schweben' \mapsto SL werden aus Magnetfeld herausgedrängt
 - Grund: Induktion von Wirbelströmen, 10 100 nm tief im Material ('London-Eindringtiefe')
 - \vec{B} -Feld dringt nicht ins Innere ein:

$$B_{\text{innen}} = 0$$

• da

$$B_{\rm innen} = B_{\rm aussen} + \mu_0 M$$

- μ Permeabilität *M* induzierte Magnetisierung
- folgt

$$-B_{\text{aussen}} = \mu_0 M$$

- d.h. im Supraleiter induzierte Magnetisierung → gleich groß, entgegengesetztes Vorzeichen zum angelegten magnetischen Feld
- ▶ !! gilt nur bis zur einer kritischen Feldstärke H_c $\mapsto H > H_c \mapsto Magnetfeld dringt in Material ein ↓$

н

< ∃⇒

Supraleiter 1. und 2. Klasse

- ▶ nach Abhängigkeit äußeres⇔inneres Feld → zwei Klassen von Supraleitern
- ▶ Supraleiter 1. Art; weich
 - perfektes MEISSNER-Verhalten: $B \propto M$ bis H_c
 - $> H_{\rm c} \mapsto$ Feld dringt ein
 - für: elementare Metalle wie W, Ti, Sn, Hg, Pb
 - H_c sehr klein (max. 0.08 T für Pb) für Anwendungen
- ▶ Supraleiter 2. Art, hart
 - Feld dringt nur partiell in Material ein
 - Übergangsbereich $H_{c1} H_{c2} \mapsto$ Gitter aus 'Flußschläuchen' ('Vortex'-Zustand)
 - für: alle Legierungen, Oxid-Keramiken, etc.
 - Bereich f
 ür wichtige Anwendungen (z.B. Magnete), d.h. H_{c2} i.A. > H_c

▶ für T-Abhängigkeit von H_c (Supraleiter 1. Art) bzw. H_{c2} (SL 2. Art) empirisch:

$$H_{\rm c} \sim H_{\rm c} (T=0) [1 - (\frac{T}{T_{\rm c}})^2]$$

- \blacktriangleright weiterer Parameter \mapsto kritische Stromdichte J_c
- \blacktriangleright ternäre Supraleiter 'Phasendiagramme' \Rightarrow
- \blacktriangleright z.B. für YBCO/123-SL/YBa₂Cu₃O_{7-x}:

•
$$T_{\rm c} = 93 {\rm K}$$

.

•
$$H_{\rm c} = 22 \,{\rm T} \,({\rm bei} \, T = 2 \,{\rm K})$$

•
$$J_{\rm c} = 10^5 \,\,{\rm A/mm^2}$$

④ JOSEPHSON-Effekt

- JOSEPHSON-Effekt (Gleichstrom)
 - zwei Supraleiter, getrennt durch Isolator (SIS-Kontakte)
 - Stromfluss auch über diese Verbindung \mapsto Isolator wird zum Supraleiter
 - oberhalb kritischer Stromstärk
e $i_{\rm c} \mapsto {\rm Spannungsabfall}$
- ▶ Parallelschaltung zweier JOSEPHSON-Kontakte \Rightarrow
 - $i_{c,max}$. abhängig von magnetischem Flux in Schleife

$$i_{\rm c,max.} = 2I_J cos(\pi \frac{\Phi}{\Phi_0})$$

• mit

- I_J : Konstante, abhängig Geometrie des Aufbaus
- Φ : magnetischer Flux

$$\Phi_0: \ \Phi_0 = \frac{h}{2c}$$

- ► Anwendung
 - SQUID-Magnetometer (Messung sehr kleiner Magnetfelder)
 - schnelle Schaltelemente, sehr genaue Spannungsstabilisatoren

Einleitung, Historisches

2 Physikalische Eigenschaften (Messungen)

3 Theoretische Beschreibungen

Anwendungen

Sonventionelle Supraleiter (Metalle und Legierungen)

Elemente

Legierungen

Interstitielle feste Lösungen

Oxido-Cuprate (High-T_c-Materialien) Die Stammverbindungen La₂CuO₄ und Nd₂Cu YBCO/123-Supraleiter Weitere Varianten

 Sonstige (neuere) Materialklassen CHEVREL-Phasen MgB₂
 Fe-basierte Supraleiter (IBSC) Superhydride

イロト 不同 とうせい 不同 と

1 BCS-Theorie

- ▶ BARDEEN, COOPER, SCHRIEFFER (1957¹)
- ▶ komplette Quantentheorie des supraleitenden Zustandes
- ▶ nur für einfache, isotrope (kubische) konventionelle Supraleiter gültig
- ► Ausdrücke für T_c $(T_c \propto \frac{1}{M})$ und Bandlücke $\Delta E(T=0)$ $(\frac{\Delta E(T=0)}{k_B T_C} = 1.76)$
- ▶ anschauliche Beschreibung:
 - erhöhte EntropieSzeigt \mapsto höherer Ordnungzustand
 - Kopplungsphänomene zwischen zwei $\mathrm{e}^-\!\leftrightarrow$ atomares Gitter
 - \mapsto passierendes e^ ändert Gitterschwingung (Phonon)
 - \mapsto e^ deformiert Gitter (Polaron)
 - \mapsto e^ mit entgegengesetztem Spin stellt Grundzustand wieder her
 - \mapsto 2. e^- nutzt Deformation des Gitters (Phonon) aus
 - + 2 e^ mit antiparallelem Spin gekoppelt \Longrightarrow COOPER-Paar
 - Quasiteilchen: Boson (S=0)
 - keine Streuung an Rümpfen wie bei einfachen e^-
 - Entfernung der beiden
e $^-$ (Korrelationslänge) ca. 100 nm
 - typische Konzentrationen: 1 COOPER-Paar auf 10^6 e^-
 - \mapsto widerstandsloser Transport des elektrischen Stroms
- ► Erweiterungen von ELIASHBERG und MCMILLAN
 - Basis weiterhin gekoppelte $\mathrm{e^-}$ Phonon Wechselwirkungen
- > Abschätzung für High-Tc: COOPER-Paare mit kurzen e^--e^--Abständen \Downarrow

イロト イボト イヨト イヨト 三日

¹ Phys. Rev. **108**, 1175-1204 (1957)

⁽²⁾ chemisches/anschauliches Modell¹

- ▶ Korrelationslängen für Oxide etc. im Bereich der Länge chemischer Bindungen
- Modell: $BaPb_{0.8}Bi_{0.2}^{4+}O_3$
 - $T_{\rm c} = 13 {\rm K}$
 - Struktur: Perowskit
 - $\operatorname{Bi}^{4+} \longrightarrow \operatorname{Bi}^{3+} + \operatorname{Bi}^{5+}$
 - bevorzugte Koordination: Bi^{3+} : ψ -Oktaeder; Bi^{5+} : ideales Oktaeder

- Normalschwingungen (Phonon) 'erzeugt'
 $\psi\text{-}\mathsf{Oktaeder}$
- maximale Auslenkung \mapsto günstig für Bi^{3+} \mapsto e^--Paar lokalisiert
- da immer Paar
 \mapsto e^- bekommen attraktive WW
- aus chemischer Sicht: Valenzfluktuation von 2 e^ antiparallelen Spins, gekoppelt an Phonon (\mapsto Bipolaron)
- ▶ Oxidocuprate (analog, JT-Verzerrung/JT-Bipolaron, s.u.)
- $\blacktriangleright MgB_2 (s.u.)$

¹A. Simon, Angew. Chem. **109**, 1873 (1997); J. Bednorz, K. A. Müller, Z. Phys. B – Condens. Matter **64**, 189 (1986).

③ Zweibandmodell

- ▶ Signatur der Bandstruktur/Zustandsdichte
- ▶ Kreuzung von steilen und flachen Bändern bei E_F
- Kopplung/WW von

 - @ freien, metallischen e⁻ (Metall, Fermionen)
- 1'kovalente' Bänder be
i E_F
 - lokalisiert, kleine Dispersion, niedrige FERMI-Geschwindigkeit
 - chemische Bindungen oder 'Lone-Pair'-Elektronen
 - bei E_F = besetzt oder teilbesetzt
 - z.B.: $\delta\text{-Bindung Nb-Nb in Nb}_3\text{Sn}$
 - z.B.: Bi–O-Bindung in $Ba(Pb/Bi)O_3$
 - z.B.: Cu–O-Bindung in 123-SL
- 2'metallische' Bänder bei E_F
 - große Disperion (freies e⁻-Gas: $E \sim k^2$)
- Phonon variiert Lage/Aufspaltung des kovalenten Bandes
- ► diese Form der Bandstruktur: notwendige, aber nicht hinreichende Bedingung für Supraleitfähigkeit

3.3.3. Supraleiter

\circledast 'Fermi-Surface-Nesting'

- Signatur der Fermiflächen
- Berührung/Durchdringung zweier verschiedener
 Fermiflächen
- \blacktriangleright s.u. bei ${\rm MgB}_2$

æ

④ 'Fermi-Surface-Nesting'

- Signatur der Fermiflächen
- Berührung/Durchdringung zweier verschiedener
 Fermiflächen
- \blacktriangleright s.u. bei ${\rm MgB}_2$

- Probleme bei der quantenchemischen Behandlung der Supraleitfähigkeit nichtklassischer Supraleiter
 - grundsätzliche Limits der Bandstrukturmethoden sowie der Standard-DFT
 - Berücksichtigung von Phononen (aufwändig) \mapsto SC-DFT
 - Systeme mit offenen *d*-Schalen (*U*-Parameter, Spin-Polarisation)
 - häufig Defektstrukturen mit unklarer Kristallographie
 - Eigenschaften von Keramiken = f(Korngrenzen)
 - Einflüsse elektrischer und magnetischer Felder (s. kritische Parameter)
 - SL 2. Klasse → Fluss-Schläuche → keine reinen Bulk-Eigenschaften

イロト 不同 とくほと 不良 とう

• ..

3

- 1 Einleitung, Historisches
- 2 Physikalische Eigenschaften (Messungen)
- 3 Theoretische Beschreibungen

4 Anwendungen

(a) Konventionelle Supraleiter (Metalle und Legierungen)

Elemente

Legierungen

Interstitielle feste Lösungen

Oxido-Cuprate (High-T_c-Materialien) Die Stammverbindungen La₂CuO₄ und Nd₂Cu YBCO/123-Supraleiter Weitere Varianten

 Sonstige (neuere) Materialklassen CHEVREL-Phasen MgB₂
 Fe-basierte Supraleiter (IBSC) Superhydride

Anwendungen

- ▶ alle Anwendungen im Überblick
- widerstandsloser Stromtransport
- ► Levitation: reibungslose Lager, Schwebebahnen (MEISSNER-OCHSENFELD-Effekt)

 $({\rm Video~zum~MagLev-Zug/Japan})$

- ► Hochfeldmagnete
 - NMR-Spektrometer (Jeol/zerlegt)
 - Tomographie (MRT, Medizin) (seit 2017 bis 7 Tesla für Menschen zugelassen; Forschungsgeräte bis 21 T)
 - Dipol- und Quadrupolmagnete für Teilchenbeschleuniger
 - Fusionsreaktoren (Tokomak)
 - Generatoren (Windkraft) und Elektromotoren
 - Supraleitende magnetische Energiespeicher (SMES)
 - Magnettrennungen
- ► Detektion kleiner Magnetfelder (JOSEPHSON-Effekt)
 - SQUID-Magnetometer (Superconducting Quantum Interference Devices)
 - Supraleitende Radiofrequenz (SRF) Kavitäten (Teilchenbeschleuniger)
 - Schaltelemente für Computer (100 GHz)
- praktische Probleme
 - gute Materialien schwer zu Drähten verarbeitbar, da spröde
 - bis heute keine RT-Supraleiter

- 1 Einleitung, Historisches
- 2 Physikalische Eigenschaften (Messungen)
- 3 Theoretische Beschreibungen
- Anwendungen

6 Konventionelle Supraleiter (Metalle und Legierungen)

Elemente Legierungen Interstitielle feste Lösungen

Oxido-Cuprate (High-T_c-Materialien) Die Stammverbindungen La₂CuO₄ und Nd₂CuO YBCO/123-Supraleiter Weitere Varianten

 Sonstige (neuere) Materialklassen CHEVREL-Phasen MgB₂
 Fe-basierte Supraleiter (IBSC) Superhydride

イロト 不同 とうほう 不同 とう

- 1 Einleitung, Historisches
- ② Physikalische Eigenschaften (Messungen)
- 3 Theoretische Beschreibungen
- Anwendungen

Konventionelle Supraleiter (Metalle und Legierungen) Elemente

Legierungen Interstitielle feste Lösungen

Oxido-Cuprate (High-T_c-Materialien) Die Stammverbindungen La₂CuO₄ und Nd₂Cu YBCO/123-Supraleiter Weitere Varianten

Sonstige (neuere) Materialklassen
 CHEVREL-Phasen
 MgB₂
 Fe-basierte Supraleiter (IBSC)
 Superhydride

イロト 不同 とうほう 不同 とう

1 Elemente

- ▶ Elemente mit v.e.c. = 2 bis 8; günstig: v.e.c. = 4.7 und 6.5 (MATTHIAS-Regel)
- ▶ Wertebereich für T_c : 0.012 K (W) bis 9.25 K (Nb)
- \blacktriangleright höheres $T_{\rm c}$ bei ungeraden Elektronenzahlen
- ▶ Ferro-Magnetismus/gute elektr. Leitfähigkeit mit Supraleitung inkompatibel
- ▶ möglichst kleine Atomvolumina → hohen Packungsdichten → einige Elemente nur in HP-Allotropen supraleitend
- ► Isotopeneffekt: wegen Beteiligung von Gitterschwingungen \mapsto leichtere Isotope günstiger: $T_c \sim \sqrt{\frac{1}{M}}$ (*M*: Atommasse)
- Beispiel Quecksilber
 - $^{199.5}$ Hg: $T_{\rm c} = 4.185$ K
 - ${}^{203.4}$ Hg: $T_c = 4.146$ K

イロト イヨト イヨト イヨト

 $1 \text{ G} = 10^{-4} \text{ T}$

- 1 Einleitung, Historisches
- 2 Physikalische Eigenschaften (Messungen)
- 3 Theoretische Beschreibungen
- Anwendungen

6 Konventionelle Supraleiter (Metalle und Legierungen)

Elemente

Legierungen

Interstitielle feste Lösungen

Oxido-Cuprate (High-T_c-Materialien) Die Stammverbindungen La₂CuO₄ und Nd₂Cu YBCO/123-Supraleiter Weitere Varianten

 Sonstige (neuere) Materialklassen CHEVREL-Phasen MgB₂
 Fe-basierte Supraleiter (IBSC) Superhydride

イロト 不同 とうほう 不同 とう

- \blacktriangleright Kristallchemie: hohe Packungsdichten
 \mapsto nicht ferromagnetische FRANK-KASPER-Phasen
- $\blacktriangleright\$ Cr_3Si/A15-Typ-Strukturen, praktisch wichtige Legierung: Nb_3Ge, Nb_3Sn
- ▶ theoretisch interessant: sog. 'Schwerfermionen'-Systeme
 - Elemente mit offenen f-Schalen und großen Abständen
 - alle sehr niedrige Sprungtemperaturen
 - $CeCu_2Si_2$, UBe_{13} , $CeCoIn_5$ und $PuCoGa_5$
 - sehr hohe DOS bei E_F (*f*-Niveaus)
 - effektive Elektronenmassen $m^* = 10^3 \times m_e$
- \blacktriangleright im Detail, die beiden praktisch wichtigsten Legierungen \Downarrow
 - Nb₃Sn
 - NbŤi

$\rm Nb_3Sn:$ Kristallstruktur (A15-Typ)

- ▶ Cr₃Si-Typ, kubisch, Raumgruppe $Pm\bar{3}n$
- ► $d_{\text{Nb-Nb}} = 264.3 \text{ pm } (2 \times)$ \mapsto Nb-Ketten mit starker d-d-Wechselwirkung (δ -Bindung)
- ▶ einander durchdringende FK-Polyeder
 - $CN_{Sn} = 12$ (Ikosaeder, FK-12)
 - $CN_{Nb} = 14$ (doppelt überkapptes hexagonales Antiprisma, FK-14)
- VRMLs der Strukturen:
 - ohne Polyeder
 - mit Ikosaeder
 - beide Polyeder
- ▶ Werte für $T_{\rm c}$
 - Nb₃Sn: 18.3 K
 - Nb₃Ge: 23.3 K
 - Nb₃Ga:

$\rm Nb_3Sn:$ Kristallstruktur (A15-Typ)

- ▶ Cr₃Si-Typ, kubisch, Raumgruppe $Pm\bar{3}n$
- ► $d_{\text{Nb-Nb}} = 264.3 \text{ pm } (2 \times)$ \mapsto Nb-Ketten mit starker d-d-Wechselwirkung (δ -Bindung)
- ▶ einander durchdringende FK-Polyeder
 - $CN_{Sn} = 12$ (Ikosaeder, FK-12)
 - $CN_{Nb} = 14$ (doppelt überkapptes hexagonales Antiprisma, FK-14)
- VRMLs der Strukturen:
 - ohne Polyeder
 - mit Ikosaeder
 - beide Polyeder
- ▶ Werte für $T_{\rm c}$
 - Nb₃Sn: 18.3 K
 - Nb₃Ge: 23.3 K
 - Nb₃Ga:

$\rm Nb_3Sn:$ Kristallstruktur (A15-Typ)

- ▶ Cr₃Si-Typ, kubisch, Raumgruppe $Pm\bar{3}n$
- ► $d_{\text{Nb-Nb}} = 264.3 \text{ pm } (2 \times)$ \mapsto Nb-Ketten mit starker d-d-Wechselwirkung (δ -Bindung)
- ▶ einander durchdringende FK-Polyeder
 - $CN_{Sn} = 12$ (Ikosaeder, FK-12)
 - $CN_{Nb} = 14$ (doppelt überkapptes hexagonales Antiprisma, FK-14)
- VRMLs der Strukturen:
 - ohne Polyeder
 - mit Ikosaeder
 - beide Polyeder
- ▶ Werte für $T_{\rm c}$
 - Nb₃Sn: 18.3 K
 - Nb₃Ge: 23.3 K
 - Nb₃Ga:

Nb₃Sn: Supraleitende Eigenschaften, DOS und Bandstruktur

Nb₃Sn: Herstellung und Verwendung

- Problem: sehr spröde
- ▶ Fertigung von Spulen (z.B. für NMR-Magnete)
 - 'bronze process' (Nb-Drähte in Bronze)
 - 'internal tin' Prozess (Cu mit Nb aussen, Sn innen)
 - 'powder-in-tube' (PIT) Prozeß (Nb-Rohre, mit Sn gefüllt)
 - Reaktion zu Nb₃Sn erst <u>nach</u> Formgebung (Diffusion bei ca. 700 °C)

 $\blacktriangleright ~ {\rm fs.magnet.fsu.edu} \Downarrow {\rm bzw.~www.supercon-wire.com}$

Internal Sn process

PIT process

SEM-Bild der Nb₃Sn-'Drähte' nach Wegätzen von Cu

β -NbTi

- ▶ aktuell wichtigstes Material für Hochfeldmagnete
- weniger spröde als A15-Legierungen
- \blacktriangleright $\beta\mbox{-}Form:$ W-Typ, b.c.c., mit statistischer Atomverteilung
- ▶ 46.5 Gew.-% Ti
- \blacktriangleright gegenüber reinem Nb ca. 2 % verkleinerte Gitterparameter (a = 329.5 pm)
- ▶ Hauptkomponente der Leitfähigkeit entlang [111]
- kritische Parameter
 - $T_{\rm c} = 9.6 \ {\rm K}$
 - $H_{c2} = 11.5 \text{ T}$
 - $J_{\rm c} = 3000 \, {\rm A/mm^2}$
- \blacktriangleright Herstellung von Drähten ähnlich wie bei Nb $_3 Sn$
- Links zu einigen Herstellern
 - Fa. Bruker

- 1 Einleitung, Historisches
- 2 Physikalische Eigenschaften (Messungen)
- 3 Theoretische Beschreibungen
- Anwendungen

6 Konventionelle Supraleiter (Metalle und Legierungen)

- Elemente
- Legierungen
- Interstitielle feste Lösungen

Oxido-Cuprate (High-T_c-Materialien) Die Stammverbindungen La₂CuO₄ und Nd₂Cu YBCO/123-Supraleiter Weitere Varianten

 Sonstige (neuere) Materialklassen CHEVREL-Phasen MgB₂
 Fe-basierte Supraleiter (IBSC) Superhydride

イロト 不同 とうほう 不同 とう

③ Interstitielle feste Lösungen

 \blacktriangleright höhere Packungsdichten \mapsto interstitiellen Verbindungen günstig \ldots

- ▶ ... Hydride
 - Th (f.c.c.): $T_{\rm c} = 1.37 \text{ K}$
 - Th_4H_{15} : $T_c = 8.5 \text{ K}$
 - zu 'Super'hydriden s.u.
- ▶ ... Hydride
 - Pd (f.c.c.): kein Supraleiter
 - PdH: $T_{\rm c} = 9 \, {\rm K}$
- … Carbide und Nitride
 - Nb (b.c.c.): $T_{\rm c} = 9.2$ K (Nb–Nb: 380 pm)
 - NbN: $T_c = 13 \text{ K} \text{ (Nb-Nb: 310 pm)}$
 - NbC: $T_{\rm c} = 10.1 \text{ K}$
- chemische Bindung offensichtlich wenig relevant

æ

- 1 Einleitung, Historisches
- ② Physikalische Eigenschaften (Messungen)
- ³ Theoretische Beschreibungen
- Anwendungen
- Konventionelle Supraleiter (Metalle und Legierungen)
 Elemente
 Legierungen
 Interstitielle feste Lösungen

Oxido-Cuprate (High-T_c-Materialien) Die Stammverbindungen La₂CuO₄ und Nd₂CuO₄ YBCO/123-Supraleiter Weitere Varianten

 Sonstige (neuere) Materialklassen CHEVREL-Phasen MgB₂
 Fe-basierte Supraleiter (IBSC) Superhydride

イロト 不同 とうほう 不同 とう

Kristallchemie der Oxido-Cuprate (und IBSC)

æ

イロト 不同 とくほと 不良 とう

- 1 Einleitung, Historisches
- ② Physikalische Eigenschaften (Messungen)
- 3 Theoretische Beschreibungen
- Anwendungen

Sonventionelle Supraleiter (Metalle und Legierungen) Elemente Legierungen Interstitielle feste Lösungen

\bigcirc Oxido-Cuprate (High- T_c -Materialien) Die Stammverbindungen La₂CuO₄ und Nd₂CuO₄

YBCO/123-Supraleiter Weitere Varianten

 Sonstige (neuere) Materialklassen CHEVREL-Phasen MgB₂
 Fe-basierte Supraleiter (IBSC) Superhydride

イロト 不同 とうほう 不同 とう

Die Stammverbindung T, La₂CuO₄, Strukturprinzipien I

Verbindungen und Eigenschaften

- $La_2[Cu^{+II}O_4]$: kein Supraleiter
- $La_{1.8}Sr_{0.2}[CuO_4]$ (LSCO): $T_c = 30 \text{ K}^1$
- La_{1.8}Ba_{0.2}[CuO₄] (LBCO): $T_c = 40 \text{ K}$ Gemischtvalenz: Cu^{+2.2} = Cu^{II}/d⁹+Cu^{+III}/d⁸
- p-Typ/'Loch'-Supraleiter

(s. Kap. 1.3., S. 30 Fremdfehlordnung)

- $T_{\rm c}$ abhängig vom Substitutionsgrad x
- bei höherem x zusätzlich O-Defekte \mapsto damit wieder abnehmender Cu^{III}-Gehalt

► Strukturprinzip I²

- $K_2 NiF_4$ -Typ $(K_{2\infty}^2 [Ni^{[6]}F_{4/2}F_2])$
- tI, I4/mmm;
- Perowskit mit 'eingeschobenen' 1/2 NaCl (CaO)-Schichten $CaTiO_3 + CaO \longrightarrow Ca_2TiO_4$
- CN(La) = 9 (1-fach überkapptes quadratisches Antiprisma)

J. Bednorz, K. A. Müller, Z. Phys. B - Condens. Matter 64, 189 (1986); ²H.-K. Müller-Buschbaum, Angew. Chemie 101, 1503-1524 (1989). イロト イヨト イヨト イヨト

- ▶ Verbindung(en) und Eigenschaften
 - Nd_2CuO_4 : kein Supraleiter (auch nicht mit $Nd \rightarrow Erdalkalimetall-Substitution)$
 - Dotierung mit Ce⁺⁴ \mapsto Nd_{1.85}Ce_{0.15}CuO₄ \mapsto SL mit $T_{\rm c}=24~{\rm K}$
 - Gemischtvalenz: $Cu^{+1.8} = Cu^{II}/d^9 + Cu^{+I}/d^{10}$
 - n-Typ/Elektronen-Supraleiter

Strukturprinzip II

- Struktur von $Nd_2CuO_4 \Rightarrow$
- gleiche Raumgruppe (I4/mmm) und Kationenpositionen, ein O-Position abweichend
- \mapsto isolierte Oxid-Ionen (!) $(Nd_2[CuO_2](O)_2)$
- $[CuO_{4/2}]$ -Quadrat-Netze, dazwischen 'eingeschobene' PbO = $\frac{1}{2}$ CaF₂-Schichten
- $\operatorname{Nd}_2\operatorname{CuO}_4^2 \longrightarrow [\operatorname{CuO}_{4/2}] + \operatorname{Nd}_2\operatorname{O}_2$
- CN(Nd) = 8, Würfel

(日) (四) (王) (王) (王) (王)

- 1 Einleitung, Historisches
- ② Physikalische Eigenschaften (Messungen)
- 8 Theoretische Beschreibungen
- Anwendungen
- Sonventionelle Supraleiter (Metalle und Legierungen) Elemente
 - Legierungen
 - Interstitielle feste Lösungen

$\mathbf{6}$ Oxido-Cuprate (High- T_c -Materialien)

Die Stammverbindungen La₂CuO₄ und Nd₂CuO₄ YBCO/123-Supraleiter

Weitere Varianten

 Sonstige (neuere) Materialklassen CHEVREL-Phasen MgB₂
 Fe-basierte Supraleiter (IBSC) Superhydride

イロト 不同 とうほう 不同 とう

YBCO/123: YBa₂Cu₃O_{7-x}

►
$$YBa_2Cu_3O_{7-x} = 123$$
-SL = YBCO

• $T_{\rm c} = 90 \ {\rm K}^1$

- $T_{\rm c} = f(x) \ (x > 0.5: \text{ kein SL})$
- ► Synthese
 - Festkörperreaktion (Edukte: BaCO₃, Y₂O₃, CuO); ca. 1100 °C
 - O₂-Partialdrücke wichtig
- Kristallstruktur VRML
 - orthorhombisch *Pmmm*

90 Y

Sdp. Stickstoff

6.6 6.8 70

x in YBa₂Cu₃O_v

Temperatur [

60

50

6.2 64

kritische

C. Röhr: VL Festkörperchemie

Ba

$YBa_2Cu_3O_{7-x}$: Struktur(ableitung)

- ▶ ableitbar von CaTiO₃:
- ▶ kubisch, $Pm\bar{3}m$
- ① Zelle verdreifachen
 - ► Ca₃Ti₃O₉
 - \blacktriangleright tetragonal P4/mmm
- $@~8\times$ O auf Kanten entfernen:
 - ►
 - ►
 - ►
 - ►
 - \blacktriangleright orthorhombisch, Pmmm
- ③ zusätzlich Unterbesetzung der O(4)-Position (x)

Image: A match the second s

$YBa_2Cu_3O_{7-x}$: 'chemische' Aspekte der SL^1

- quadratische Pyramiden ohne Bedeutung, da Austausch von Y gegen magnetische 4f-Ionen die Supraleitung nicht unterdrückt
- \blacktriangleright ${\rm Cu}^{3+}$ nach Gitterenergie-Betrachtungen (MAPLE) in den Ketten
- ▶ quadratische Bänder für SL verantwortlich:
- \blacktriangleright Cu⁺ (linear wie in Cu₂O; Cu–O 184 pm)
- \blacktriangleright Cu^{3+} (quadratisch planar wie in KCuO_2, Cu–O ebenfalls 184 pm)

 \blacktriangleright \mapsto Gitterschwingung mit Verschiebung von je 2 e^ (COOPER-Paar) gekoppelt

▶ aber: Cu⁺ und Cu³⁺ nicht isoliert nachweisbar

3.3.3. Supraleiter

イロト 不問 とうほう 不良 とう

¹A. Simon, Angew. Chem. **109**, 1873 (1997).

- 1 Einleitung, Historisches
- ② Physikalische Eigenschaften (Messungen)
- 3 Theoretische Beschreibungen
- Anwendungen
- Sonventionelle Supraleiter (Metalle und Legierungen) Elemente
 - Legierungen
 - Interstitielle feste Lösungen

$\mathbf{6}$ Oxido-Cuprate (High- T_c -Materialien)

Die Stammverbindungen La₂CuO₄ und Nd₂CuO₄ YBCO/123-Supraleiter

Weitere Varianten

 Sonstige (neuere) Materialklassen CHEVREL-Phasen MgB₂
 Fe-basierte Supraleiter (IBSC) Superhydride

イロト 不同 とうほう 不同 とう

▶ viele weitere komplizierte Stapel-Varianten

(System-spezifische, leider uneinheitliche Kennzeichnung)

- 'Trennung' der Oxido-Cuprat-Schichten durch ionische isolierende Zwischenschichten
 - passend zur f.c.c. Randschicht \mapsto Kochsalz-artige $[MO_6]$ -Oktaeder-Schichten
 - passende=große Kationen: Tl^{III} , Bi^{III} , Hg^{II}
 - Ladung +II/+III erlaubt Variation der Cu-Oxidationsstufen
- ▶ Variation der 'Dicke'/Zahl der CuO₂-Schichten in der Oxido-Cuprat-Blöcken
 - variabel durch Größe und Verhältnis der Erdalkalimetalle-Gegenionen
 - bevorzugte Koordnationszahlen: Ca 6-8; Ba: 9-12
 - \mapsto mehr Ba \mapsto 'dickere' CuO₂/Perowskit-Blöcke

イロト イボト イヨト イヨト 三日

Varianten von $\mathrm{YBa}_2\mathrm{Cu}_3\mathrm{O}_{7\text{-}x}$

- ▶ zwei Serien, nach Art der Zwischenschicht:
- a) + Oktaeder-Doppel-Schichten $\text{Tl}_2^{\text{III}}\text{O}_2/\text{Bi}_2^{\text{III}}\text{O}_2 \Rightarrow \text{ganz}$ rechts (oP)
 - allgemein: Tl₂Ba₂Ca_{n-1}Cu_nO_{2n+4} (n=1-4, d.h. 2201,2212,2223,2234)
 - z.B. TBCC-2223: Tl₂Ba₂Ca₂Cu₃O_{10-x} ($T_{\rm c}$ = 128 K)
- b) + Oktaeder-Einfach-Schichten $Tl^{III}O/Hg^{II}O \Rightarrow$ unten links (oI)

 - z.B. Hg-1223: HgBa_2Ca_2Cu_3O_{9-x} (T_c = 133 \text{ K})
 - $[CuO_5]$ -Pyramiden + Netze planarer $[CuO_4]$ -Einheiten
 - O-Position der Pyramidenbasis unterbesetzt
 - \blacktriangleright ideale CuO₂/Perowskit-Paketdicken: 3 Schichten
 - Il zusätzlich O-Defekte
 - schwer gezielt einstellbar
 - schwer analytisch zu bestimmen

► < Ξ >

+ Schichten	Cu/O-Schichten	$Verbindung^2$	Bezeichnung	$T_{ m c}$
_	1	$La_{1.84}Sr_{0.16}CuO_4$	Т	38
	1	$Nd_{2-x}Ce_{x}CuO_{4}$	\mathbf{T}'	20
	3	$\rm YBa_2Cu_3O_{6.95}$	123	93
Bi_2O_2	1	$\mathrm{Bi}_{2}\mathrm{Sr}_{2}\mathrm{CuO}_{6}$	2201	10
	2	$\mathrm{Bi}_{2}\mathrm{Sr}_{2}\mathrm{CaCu}_{2}\mathrm{O}_{8}$	2212	92
	3	$\mathrm{Bi}_{2}\mathrm{Sr}_{2}\mathrm{Ca}_{2}\mathrm{Cu}_{3}\mathrm{O}_{10}$	2223	110
Tl_2O_2	1	$\mathrm{Tl}_{2}\mathrm{Ba}_{2}\mathrm{CuO}_{6}$	2201	92
	2	$Tl_2Ba_2CaCu_2O_8$	2212	119
	3	$Tl_2Ba_2Ca_2Cu_3O_{10}$	2223	128
	4	$\mathrm{Tl_2Ba_2Ca_3Cu_4O_{12}}$	2234	119
TlO	1	$TlBa_2CuO_5$	1201	10
	2	$TlBa_2CaCu_2O_7$	1212	103
	3	$\mathrm{TlBa}_{2}\mathrm{Ca}_{2}\mathrm{Cu}_{3}\mathrm{O}_{9}$	1223	110
HgO	1	$HgBa_2CuO_5$	1201	94
	2	$HgBa_2CaCu_2O_7$	1212	127
	3	HgBa ₂ Ca ₂ Cu ₃ O ₉	1223	133
	4	$HgBa_2Ca_3Cu_4O_{11}$	1234	126
TlO/HgO	3	$\mathrm{Hg}_{0.8}\mathrm{Tl}_{0.2}\mathrm{Ba}_{2}\mathrm{Ca}_{2}\mathrm{Cu}_{3}\mathrm{O}_{8}$	1223	138
1 : Demonstrit A	useeheitt shas Defelet	² abra O Dafalita		_

Varianten von $\mathrm{YBa}_2\mathrm{Cu}_3\mathrm{O}_{7\text{-}x}$

¹ im Perowskit-Ausschnitt, ohne Defekte; ² ohne O-Defekte $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle \langle \Xi \rangle$

C. Röhr: VL Festkörperchemie

3.3.3. Supraleiter

50 / 65

- 1 Einleitung, Historisches
- ② Physikalische Eigenschaften (Messungen)
- 8 Theoretische Beschreibungen
- Anwendungen
- (5) Konventionelle Supraleiter (Metalle und Legierungen)
 - Elemente
 - Legierungen
 - Interstitielle feste Lösungen
- Oxido-Cuprate (High-T_c-Materialien) Die Stammverbindungen La₂CuO₄ und Nd₂Cu YBCO/123-Supraleiter Weitere Varianten
- Sonstige (neuere) Materialklassen CHEVREL-Phasen MgB₂
 Fe-basierte Supraleiter (IBSC) Superhydride

イロト 不同 とうほう 不同 とう

- 1 Einleitung, Historisches
- ② Physikalische Eigenschaften (Messungen)
- 8 Theoretische Beschreibungen
- Anwendungen
- (5) Konventionelle Supraleiter (Metalle und Legierungen)
 - Elemente
 - Legierungen
 - Interstitielle feste Lösungen
- Oxido-Cuprate (High-T_c-Materialien) Die Stammverbindungen La₂CuO₄ und Nd₂Cu YBCO/123-Supraleiter Weitere Varianten
- Sonstige (neuere) Materialklassen
 CHEVREL-Phasen
 - MgB₂ Fe-basierte Supraleiter (IBSC) Superhydride

$CHEVREL-Phasen^1$

- SL 2. Art, $T_{\rm c} = 14.4$ K
- $H_c \approx 45 \text{ T} \mapsto !! \text{ sehr hoch } !!$
- ► Zusammensetzung: $A_x[Mo_6X_8]$ (A: Gegenionen, z.B. Pb²⁺; [Mo₆]-Oktaeder; X: S, Se, (Te)
- Kristallstruktur:
 - $[Mo_6X_8]$ -Würfel
 - S–Mo-Wechselwirkungen zwischen Clustern
 - Mo: 4+1-S-Umgebung
 - Pb reversibel austauschbar, Variation der Ladung möglich
- \blacktriangleright elektrische Eigenschaften
 - abhängig von e⁻-Zahl des Clusters
 - 24 e⁻-Cluster \mapsto kein SL z.B. $[(Mo_4Ru_2)Se_8]:$ 4 \times 6 (Mo) + 2 \times 8 (Ru) 2 \times 8 = 24
 - elektronen
präsize Halbleiter, jeder Oktaederkante entspricht ein
e $^-\mbox{-}{\rm Paar}$
 - 22 e^{-} -Cluster \mapsto SL
 - z.B. Stammverbindung $\rm Pb^{4+}[Mo_6S_8]: 6 \times 6$ 2 × 8 + 4 (Ldg.) = 22
 - nicht elektronenpräzise \mapsto guter elektrischer Leiter (Löcher); $\langle T_c \text{ supraleitend} \rangle$

- 1 Einleitung, Historisches
- ② Physikalische Eigenschaften (Messungen)
- 8 Theoretische Beschreibungen
- Anwendungen
- (a) Konventionelle Supraleiter (Metalle und Legierungen)
 - Elemente
 - Legierungen
 - Interstitielle feste Lösungen
- Oxido-Cuprate (High-T_c-Materialien)
 Die Stammverbindungen La₂CuO₄ und Nd₂0
 YBCO/123-Supraleiter
 Weitere Varianten
- Sonstige (neuere) Materialklassen
 - CHEVREL-Phasen MgB_2
 - Fe-basierte Supraleiter (IBSC) Superhydride

- entdeckt 2001
- $T_{\rm c} = 39 \text{ K}, H_{\rm c2} = 200 \text{ T} (!!)$
- $J_{\rm c} = 10^5 \text{ A/m}^2 \text{ (bei 20 T und 5 K)}$
- heute erste Anwendungen/Verarbeitung zu Kabeln
 - Herstellung, Video
 - Fa. Sam Dong/Korea
- ▶ sehr einfache Struktur, keine Übergangsmetalle enthalten
 → theoretische Behandlung vergleichsweise einfach

æ

 ${\rm MgB}_2:$ Struktur und Bandstruktur

C. Röhr: VL Festkörperchemie

3.3.3. Supraleiter

56 / 65

MgB_2 : 'FERMI-Surface-Nesting'

- 2-Band-Modell f
 ür die e⁻-Phonon-Kopplung
- ► e_{2g} -Phonon (B-B-Streckmode, $\omega = 0.075 \text{ eV}$)
- Kopplung mit σ-Löchern (FERMI-Fläche konkav)
- ► Aufhebung der Entartung der p_x/p_y -Bänder bei Γ -A
- \mapsto Lücke: $\Delta E_{\Gamma-A} = 1-2 \text{ eV}$
- ► π -bindend (nur bei $K M > E_F$, lochartig, konkav)
- ► π -antibindend (nur bei H-L < E_F , elektronenartig, konvex)

- 1 Einleitung, Historisches
- ② Physikalische Eigenschaften (Messungen)
- 8 Theoretische Beschreibungen
- Anwendungen
- **5** Konventionelle Supraleiter (Metalle und Legierungen)
 - Elemente
 - Legierungen
 - Interstitielle feste Lösungen
- Oxido-Cuprate (High-T_c-Materialien) Die Stammverbindungen La₂CuO₄ und Nd₂C YBCO/123-Supraleiter Weitere Varianten
- ♂ Sonstige (neuere) Materialklassen
 - CHEVREL-Phasen MgB₂ Fe-basierte Supraleiter (IBSC) Superhydride

イロト 不同 とうほう 不同 とう

Fe-basierte Supraleiter $(IBSC)^1$

- ▶ 'FeSe'
 - $T_c = 8 \text{ K}$ (bis 38 K unter Druck)
 - PbO-Struktur \Rightarrow
- Fe-Chalkogenide/Pnicogenide LnTPnO mit T = Fe, Co, Mn, Ni; Pn = P, As, Sb
 - LaFePO: $T_c = 7 \text{ K} (2006)$
 - LaFeAsO_{1-x}F_x: $T_c = 26$ K (2008)
 - $La_{1-x}Sr_xAsO: T_c = 25 \text{ K} (2008)$
 - SmFeAsO_{1-x}F_x: $T_c = 55$ K (2008)
- Struktur \Rightarrow
 - ZrCuSiAs-Typ (aufgefüllter PbFCl-Typ)
 - alternierende Schichten kantenverknüpfter Tetraeder [FeAs $_{4/4}$] und [LaO $_{4/4}$]
 - CN(La) = 8
- Supraleitung in Fe/As-Schichten

¹ Hosono, 2008

C. Röhr: VL Festkörperchemie

Fe-basierte Supraleiter (IBSC)

D. Johrendt, J. Mater. Chem., 21, 13726 (2011); A. L. Ivanovskii, Physica C: Superconductivity 409 (2011); A. C.

- 1 Einleitung, Historisches
- ② Physikalische Eigenschaften (Messungen)
- 8 Theoretische Beschreibungen
- Anwendungen
- (a) Konventionelle Supraleiter (Metalle und Legierungen)
 - Elemente
 - Legierungen
 - Interstitielle feste Lösungen

Oxido-Cuprate (High-T_c-Materialien) Die Stammverbindungen La₂CuO₄ und Nd₂(YBCO/123-Supraleiter Weitere Varianten

♂ Sonstige (neuere) Materialklassen

CHEVREL-Phasen MgB₂ Fe-basierte Supraleiter (IBSC) Superhydride

イロト 不同 とうせい 不同 と

- $\blacktriangleright\,$ 2015: H_3S unter Druck, Diamantstempelzelle
- \triangleright $T_{\rm c} = 203$ K bei 155 GPa
- ▶ $T_{\rm c} = 260$ K bei 190 GPa
- Messung der elektrischen Leitfähigkeit 'in-situ'
- Struktur
 - aufgefüllter W-Typ, $Im\bar{3}m$
 - interpenetrierende ${\rm ReO}_3\text{-}{\rm Netze}$
 - CN(S)=6, d(S-H) = 152.9 pm

Nature 525, 73 (2015); Nature Physics, 12, 835 (2016); V. S. Minkov et al., Angew. Chem. 59, 18970-18974 (2020)

Superhydride, z.B. LaH_{10}

- Voraussage: H unter extremem Druck (ca. 500 GPa) supraleitend, experimentell nicht realisierbar
- \blacktriangleright \mapsto H-reiche interstitielle Hydride
- LaH_x mit x = 6-10
- ▶ LaH₁₀: $T_c = 260$ K bei p = 190 GPa
- Struktur
 - kubisch, Fm3m
 - H-aufgefüllter Cu-Typ
 - neuer Clathrat-Typ: LaH₃₂-Polyeder (abgeschrägter Würfel), H₈-Würfel

- $(H_2S)_x(CH_4)_{1-x}H_n (n z.B. 7)$
- \blacktriangleright z.B. $T_{\rm c}=288~{\rm K}$ be
i $p=267~{\rm GPa}$
- \blacktriangleright S/C-Atome bilden orthorhombische Cu₂Al-Struktur (wenige Reflexe, Einkristalldaten ca. 0.04 mm)
- ▶ S/C-Atomverteilung noch unbekannt
- H-Positionen unbekannt
- ▶ genaue Zusammensetzungen ebenfalls unbekannt

臣

R. J. Hemley et al.

C. Röhr: VL Festkörperchemie

- 1. Bau von Festkörpern: Atomare und elektronische Strukturen 🗸
- 2. Reaktionen und Synthesen von Festkörpern 🗸
- 3. Eigenschaften und Anwendungen von Festkörpern
 - 3.1. Übersicht \checkmark
 - 3.2. Polarisationseffekte (statischer Response)
 - 3.2.1. Dielektrika 🖌
 - 3.2.2. Magnetmaterialien (AGP/AC-III)
 - 3.3. Transporteffekte (dynamischer Response)
 - 3.3.1. Metalle (QM-Kurs)
 - 3.3.2. Halbleiter (QM-Kurs)
 - **3.3.3.** Supraleiter \checkmark
 - 3.3.4. Ionenleiter ▶
 - **3.4.** Optische Eigenschaften

イロト 不同 とくほと 不良 とう