Zeolithe – Siedende Steine

(altgriechisch: $\zeta \epsilon on = \text{zeon} = \text{siedend} + \lambda \iota \theta o \sigma = \text{lithos} = \text{Stein}$)

LA-AFP, Februar/März 2022

Caroline Röhr, Institut für Anorganische und Analytische Chemie, Univ. Freiburg

LA-AFP 2022 Zeolithe Siedende Steine 25.02.2022

- 1 Einleitung
- Kristallstrukturen

Strukturprinzipien, Nomenklatur, Kanalsysteme

Natürliche Zeolithe

Würfelzeolithe (inkl. Chabazit etc.)

Pentasile (inkl. Mordenit)

- 3 Synthese und Modifizierung
- 4 Verwendung
 - I. Ionenaustauscher
 - II. Adsorptions/Trockenmittel
 - III. (Molekular-)Siebe
 - IV. saure Katalysatoren
 - V. Redox-Katalysatoren
- 6 Zusammenfassung

LA-AFP 2022

6 Literatur

◄□▶ ◄□▶ ◀ 를 ▶ ◀ 를 ▶ ○ 를 □ 맛이

2 / 55

25 02 2022

• Einleitung

2 Kristallstrukturen

Strukturprinzipien, Nomenklatur, Kanalsysteme

Natürliche Zeolithe

Würfelzeolithe (inkl. Chabazit etc.)

Pentasile (inkl. Mordenit)

3 Synthese und Modifizierung

Verwendung

I. Ionenaustauscher

II. Adsorptions/Trockenmittel

III. (Molekular-)Siebe

IV. saure Katalysatoren

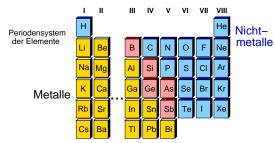
V. Redox-Katalysatoren

5 Zusammenfassung

6 Literatur

LA-AFP 2022

Die Präparate


- ▶ Praktikums-Präparate:
 - $\,\blacktriangleright\,$ Zeolith A: $\mathrm{Na}_{12}(\mathrm{AlO}_2)_{12}(\mathrm{SiO}_2)_{12}{\cdot}27\mathrm{H}_2\mathrm{O}$?
 - $ightharpoonup ZSM-5: Na_7[Al_7Si_{89}O_{192}] \cdot xH_2O$?
- \blacktriangleright Polyanion: $[\mathrm{Al}_n\mathrm{Si}_m\mathrm{O}_{2(n+m)}]^{n-} \ (m{:}n \mapsto \mathrm{'Modul'}\ M)$
- ightharpoonup isoelektronisch zu SiO $_2$
- ▶ $[SiO_{4/2}] \mapsto [SiO_4]$ -Tetraeder, über alle Ecken verknüpft \mapsto Gerüst/Tecto-Alumosilicate

4□ > 4団 > 4豆 > 4豆 > 豆 のQ♡

4 / 55

LA-AFP 2022 Zeolithe - Siedende Steine 25.02.2022

Chemie (stark vereinfacht!)

_	einfaches Beispiel	SiO ₂ (Quarz)	Ca[Al ₂ Si ₂ O ₈]
Salze	CaO (gebr. Kalk)		
(ionische Bindung)	Ca ²⁺ + O ²⁻	Si ⁴ ‡ 2 O ²⁻	Ca ² + 2 Al ³ + 2 Si ⁴ + 8 O ² -
Moleküle (kovalente Bindung)	(Kohlenstoffdioxid) O=C=0	$ \begin{array}{c cccc} & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & \\ \hline & & & & & \\ \hline & & & & \\ \hline & &$	1/2 Ca^{2+} $\begin{vmatrix} \dot{O} & \dot{O} \\ \dot{O} & \dot{O} \end{vmatrix}$ $-\overline{O} - \dot{S}i - \overline{O} - \dot{A}i - \overline{O} -$ $\begin{vmatrix} \dot{O} & \dot{O} \\ \dot{O} & \dot{O} \end{vmatrix}$ Alumosilicate

LA-AFP 2022 Zeolithe - Siedende Steine 25.02.2022

5 / 55

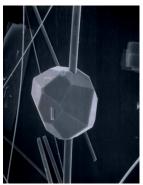
Gerüstalumosilicate: Struktur – Eigenschaftsbezug, Bsp. $\mathrm{Ca}[\mathrm{Al_2Si_2O_8}]$

- l: 'Siedesteine': z.B. Ca-Feldspat (Anorthit) Ca[Al₂Si₂O₈]
- r: 'Siedende Steine': z.B. Gismondin Ca[Al₂Si₂O₈] · 5 H₂O

'Sieden' einesZeolith-Kristalls

LA-AFP 2022 Zeolithe - Siedende Steine 25.02.2022

Natürliche und synthetische Zeolithe


- ▶ Zeolithe: Tectosilicate mit großen Kanälen und Käfigen, die für Gäste (Kationen, Wasser, organische Moleküle) zugänglich sind
- ▶ Gewinnung: natürlich: 3×10^6 t/a (2016); synthetisch: 2×10^6 t/a
- ▶ ca. 230 verschiedene Strukturtypen, davon 40 bei natürlichen Zeolithen

Skolezit

Chabazit

synthetischer Chabazit

LA-AFP 2022

- Einleitung
- Kristallstrukturen

Strukturprinzipien, Nomenklatur, Kanalsysteme

Natürliche Zeolithe

Würfelzeolithe (inkl. Chabazit etc.)

Pentasile (inkl. Mordenit)

- 3 Synthese und Modifizierung
- Verwendung
 - I. Ionenaustauscher
 - II. Adsorptions/Trockenmittel
 - III. (Molekular-)Siebe
 - IV. saure Katalysatoren
 - V. Redox-Katalysatoren
- 5 Zusammenfassung
- 6 Literatur

8 / 55

LA-AFP 2022 Zeolithe - Siedende Steine 25.02.2022

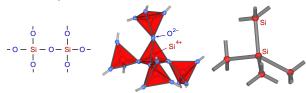
- Einleitung
- 2 Kristallstrukturen

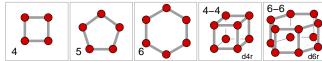
Strukturprinzipien, Nomenklatur, Kanalsysteme

Natürliche Zeolithe

Würfelzeolithe (inkl. Chabazit etc.)

Pentasile (inkl. Mordenit)


- 3 Synthese und Modifizierung
- Verwendung
 - I. Ionenaustauscher
 - II. Adsorptions/Trockenmittel
 - III. (Molekular-)Siebe
 - IV. saure Katalysatoren
 - V. Redox-Katalysatoren
- 5 Zusammenfassung
- 6 Literatur


LA-AFP 2022 Zeolithe - Siedende Steine 25.02.2022 9 / 55

Strukturprinzipien

 \blacktriangleright [SiO $_{4/2}$]- bzw. [AlO $_{4/2}$]-Tetraeder (Primary Building Units, PBU)

► Verknüpfung (über O-Ecken) zu kleineren Baugruppen (Secondary Building Units, SBU)

- ▶ größere Baugruppen: CBU (Combined Building Units)
- \blacktriangleright Verknüpfung der SBUs und CBUs zum 3D-Raumnetz \mapsto Gerüst/Tecto-Silicate

 $\blacktriangleright \mapsto \text{Polyanion: } \left[\text{Al}_n \text{Si}_m \text{O}_{2(n+m)} \right]^{n-} \left(\text{vgl. Ca}[\text{Al}_2 \text{Si}_2 \text{O}_8] \right)$

LA-AFP 2022 Zeolithe - Siedende Steine 25.02.2022 10

Nomenklatur und Klassifizierung

- ▶ Nomenklatur: Dreibuchstaben-Code
 - ► LTA (Linde Typ A)
 - ► FAU (Faujasit, Zeolith X, Y)
 - ► MFI (Mobil Five, ZSM-5, Zeolite Socony Mobile No. 5)
 - ► MOR (Mordenit)
- ► Klassifizierung: nach Morphologie (i.A. = Dimensionalität des Kanalsystems)
 - $\mathbf{0}$ eindimensionale Kanäle \mapsto Faser-Zeolithe
 - 2 zweidimensionale Kanalsysteme → lamellare Zeolithe (Blätter-Zeolithe)
 - 3 dreidimensionale Kanalsysteme \mapsto Würfelzeolithe, Pentasile

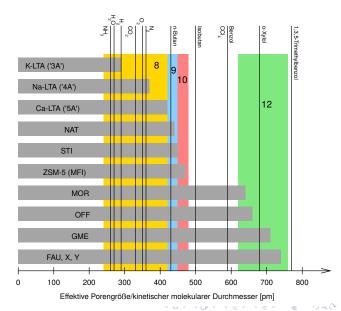
Natrolith: ein Faser-Zeolith

Heulandit: ein lamellarer Zeolith

Chabazit, ein Würfel-Z.

LA-AFP 2022 Zeolithe - Siedende Steine 25.02.2022 11 / 55

Kanalsysteme in Zeolithen


Einteilung nach Ringgröße der Fenster bzw. Porenabmessung

▶ eng-porig: T-8

 \blacktriangleright mittel-porig: T-10

▶ weit-porig: T-12

Einteilung nach Modul: $M = \frac{Si}{Al}$

LA-AFP 2022 Zeolithe - Siedende Steine 25.02.2022 12 / 55

- Einleitung
- Kristallstrukturen

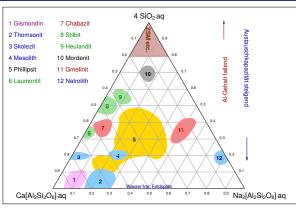
Strukturprinzipien, Nomenklatur, Kanalsysteme

Natürliche Zeolithe

Würfelzeolithe (inkl. Chabazit etc.)

Pentasile (inkl. Mordenit)

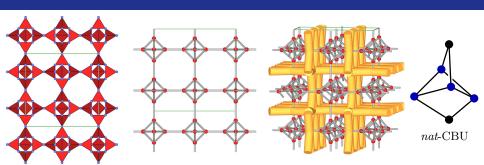
- 3 Synthese und Modifizierung
- Verwendung
 - I. Ionenaustauscher
 - II. Adsorptions/Trockenmittel
 - III. (Molekular-)Siebe
 - IV. saure Katalysatoren
 - V. Redox-Katalysatoren
- 5 Zusammenfassung
- 6 Literatur


25.02.2022

13 / 55

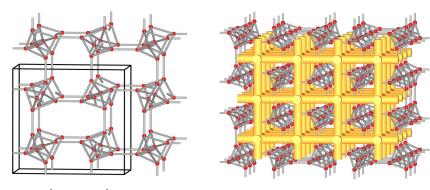
LA-AFP 2022 Zeolithe - Siedende Steine

Übersicht


- eng- bis mittelporig
- ► relativ hoher Al-Gehalt, d.h. niedriger Modul (M=1-5)
- ▶ Bsp. Na/Ca-Zeolithe \rightarrow

- Faserzeolithe (1D) der Natrolith-Gruppe: Natrolith (NAT, 12), Mesolith (4), Skolezit (3); Thomsonit (THO, 2)
- eng- bis mittelporige Ca-Zeolithe (1/2 D): Laumontit (LAU, 6), Stilbit (STI, 8), Heulandit (HEU, 9)
- 3 Zeolithe mit dreidimensionalen Kanälen: Phillipsit (PHI, 5)
- 'Würfel'zeolithe: Chabazit (7), Gmelinit (11) (hexagonal)

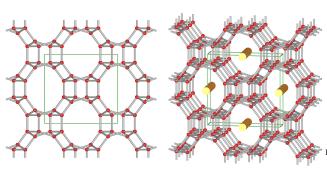
LA-AFP 2022 Zeolithe - Siedende Steine 25.02.2022 14 / 55


Faserzeolithe der Natrolith-Gruppe I: Natrolith 12, Mesolith 4 und Skolezit 3

- ▶ Basis-Struktur
 - ▶ tetragonal, $I4_1/amd$, $14 \times 14 \times 6.5$ Å
 - ▶ Ringe: 4, 8, 9 ||c||
 - ▶ 3D Kanalsystem; $\emptyset_{\rm K}=452$ pm, $\emptyset_{\rm F}=438$ pm ||c, elliptischer T-9-Ring
- \triangleright einzelne Minerale mit NAT-Struktur (alle mit M=1.5)
 - 12: Natrolith (NAT): $Na_2[Al_2Si_3O_{10}] \cdot 2H_2O$ (Fdd2)
 - 4: Mesolith: Na₂Ca₂[Al₆Si₉O₃₀]·8H₂O
 - 3: Skolezit: Ca[Al₂Si₃O₁₀]·3H₂O (monoklin, pyroelektrisch)
- ➤ Kristalle: Nadeln || pseudo-tetragonaler Kanäle, fächerförmige und kugelige Aggregate

LA-AFP 2022 Zeolithe - Siedende Steine 25.02.2022

Faserzeolithe der Natrolith-Gruppe II: Thomsonit (THO, 2)

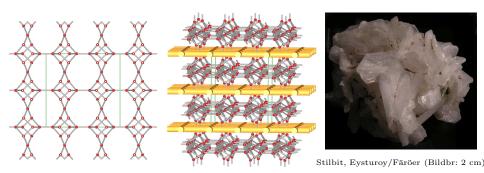

- $\qquad \qquad \mathbf{NaCa_{2}[Al_{5}Si_{5}O_{20}]} \cdot \mathbf{6H_{2}O}, \ M{=}1$
- ► Struktur
 - ▶ orthorhombisch, *Pmma*, 14×7×6.5 Å(keine NAT-Untergruppe!)
 - ▶ nat-Ketten gegeneinander verschoben \mapsto nur T-8-Ringe || c
 - ▶ Ringe: 4, 8
 - ▶ 3D Kanalsystem
 - \triangleright $\varnothing_{\rm K} = 515$ pm (> als bei NAT); $\varnothing_{\rm F} = 369$ pm ||c (< als bei NAT)

□ ▶ ←□ ▶ ←□ ▶ ←□ ▶ ←□ ▶ ←□ ▶ ←□ ▼) Q(*)

16 / 55

LA-AFP 2022 Zeolithe – Siedende Steine 25.02.2022

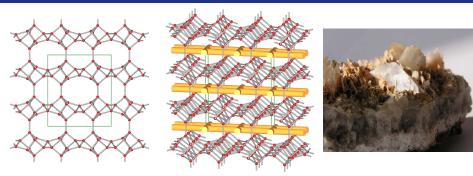
Ca-Zeolithe mit 1/2 D-Kanalsystemen I: Laumontit (LAU, 6)



Laumontit, Gewerkewald Böckstein Salzburg (Bildbreite: ca. 0.5 cm)

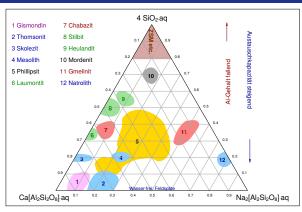
- Arr Ca[Al₂Si₄O₁₂]·4H₂O; M=1.5
- Struktur
 - monoklin, C2/m, $14.7 \times 7.5 \times 13.1 \text{ Å}$, $\beta = 112^{\circ}$
 - ▶ 1D Kanalsystem; Ringe: 4, 6, 10 || [001]
 - ► CBU: lau (2 Vierringe, über vier weitere Si-verknüpft)

LA-AFP 2022


Ca-Zeolithe mit 1/2 D-Kanalsystemen II: Stilbit (STI, 3)

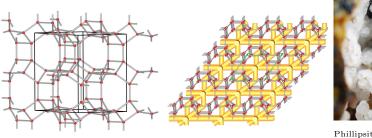
- \blacktriangleright NaCa₄[Al₉Si₂₇O₇₂]·30H₂O, $M{=}3$ (monoklin)
- Struktur
 - ▶ orthorhombisch, Fmmm
 - ▶ 2D Kanal-System (Blätterzeolith)
 - ▶ Ringe: 4, 5, 6, 8, 10
 - \triangleright $\varnothing_{\mathrm{K}} = 629 \; \mathrm{pm} \; (> \mathrm{als} \; \mathrm{bei} \; \mathrm{NAT\text{-}Familie}) \; (V_{\mathrm{frei}} = 13.6 \; \%)$
 - $\triangleright \varnothing_{\rm F} = 494 \text{ pm } ||a \text{ (T-10-Fenster)}|$

LA-AFP 2022 Zeolithe - Siedende Steine 25.02.2022 18 / 55


Ca-Zeolithe mit 1/2D-Kanalsystemen III: Heulandit/Klinoptilolith (HEU, 3)

- ▶ Ca[AlSi₃O₈]·5H₂O; M=3 (mit M >4 \mapsto Klinoptilolith)
- ▶ sehr häufiger und praktisch wichtiger natürlicher Zeolith
- Struktur
 - ▶ monoklin, C2/m, $17 \times 17 \times 7$ Å, $\beta = 116^{\circ}$
 - ▶ 2D Kanalsystem, Ringe: 4, 5, 8, 10
 - ▶ $\varnothing_{\rm F}=367~{\rm pm}$ (10-Ringe elliptisch und nicht gut zugänglich; NH $_4^+$ aber möglich, z.B. für Düngerspeicher usw. wichtig)
 - ightharpoonup CBU: $bre\ (=t\text{-}bru)$
- ▶ Kristalle: pseudohexagonale Plättchen

Übersicht


- eng- bis mittelporig
- ► relativ hoher Al-Gehalt, d.h. niedriger Modul (1-5)
- ightharpoonup Bsp. Na/Ca-Zeolithe \rightarrow

- Faserzeolithe (1D) der Natrolith-Gruppe: Natrolith (NAT, 12), Mesolith (4), Skolezit (3); Thomsonit (THO, 2)
- eng- bis mittelporige Ca-Zeolithe (1/2 D): Laumontit (LAU, 6), Stilbit (STI, 8), Heulandit (HEU, 9)
- 3 Zeolithe mit dreidimensionalen Kanälen: Phillipsit (PHI, 5)
- 'Würfel'zeolithe: Chabazit (7), Gmelinit (11) (hexagonal)

LA-AFP 2022 Zeolithe - Siedende Steine 25.02.2022 20 / 55

mit 3D-Kanalsystem: Phillipsit (PHI, 5)

Phillipsit, Limberg (Kaiserstuhl)

- $(K,Na)_{5}[Al_{5}Si_{11}O_{32}]\cdot 10H_{2}O, M=2.2 \text{ (monoklin, } P2_{1}/m)$
- ▶ Struktur
 - ightharpoonup orthorhombisch, $Cmcm~9.9\times14.1\times14.0~\text{Å}$
 - ▶ 3D Kanalsystem, T-8 in alle Richtungen, lineare und Zick-Zack-Kanäle
 - \bowtie $\varnothing_{\rm F} = 369/311/331; <math>\varnothing_{\rm K} = 540 \; {\rm pm} \; (V_{\rm frei} = 9.4 \; \%)$
 - ► CBU: Leiter-Ketten dcc
- ▶ pseudo-tetragonale Vierlinge, Säulen mit einspringenden Ecken, meist kugelige 'Büschel' dieser Kristallite

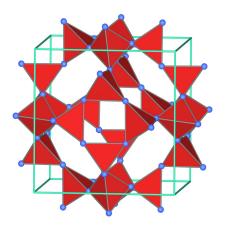
LA-AFP 2022

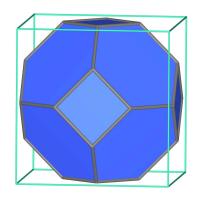
- Einleitung
- Kristallstrukturen

Strukturprinzipien, Nomenklatur, Kanalsysteme

Würfelzeolithe (inkl. Chabazit etc.)

Pentasile (inkl. Mordenit)

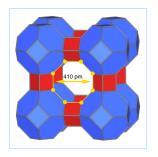

- 3 Synthese und Modifizierung
- Verwendung
 - I. Ionenaustauscher
 - II. Adsorptions/Trockenmittel
 - III. (Molekular-)Siebe
 - IV. saure Katalysatoren
 - V. Redox-Katalysatoren
- 5 Zusammenfassung
- 6 Literatur



LA-AFP 2022 Zeolithe - Siedende Steine 25.02.2022 22 / 55

Würfelzeolithe I: sod als CBU

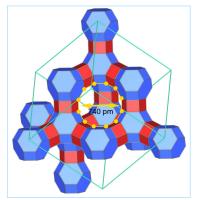
▶ sod (auch β -Käfig) als Combined Building Unit (CBU) in Würfelzeolithen



sod vrml

Würfelzeolith LTA (Linde Typ A)

- \triangleright β -Käfigen (sod), über quadratische Prismen verknüpft
- ▶ Struktur: kubisch, $Pm\bar{3}m$

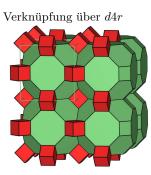


- ▶ Fenster: 8-Ringe, $\varnothing_F = 421 \text{ pm} \mapsto \text{engporizer Zeolith}$
- großer Hohlraum (lta-CBU) ($V_{\text{frei}} = 21.4 \%$)
- ▶ nur synthetisch, aber praktisch wichtigster Zeolith (ca. 2×10⁶ t/a)
- ▶ mit *M*=2 (Al-reich) als Waschmittelzusatz

LA-AFP 2022 Zeolithe - Siedende Steine 25.02.2022 24 / 55

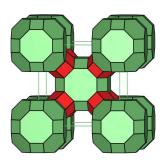
Würfelzeolith Faujasit (FAU) (Zeolith-X und -Y)

- \blacktriangleright β -Käfigen (sod), über hexagonale Prismen (d6r) verknüpft
- ▶ Struktur: kubisch, $Fd\bar{3}m$ (Diamant-Anordnung der sods)


Na-Faujasit, Limberg/Kaiserstuhl (Bildbreite: ca. 1 cm)

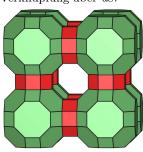
◆□▶ ◆圖▶ ◆臺▶ ◆臺▶

▶ Ringe: 4, 6 und 12 (weitporig), $\varnothing_{\rm F} = 735$ pm; $V_{\rm frei} = 27.4$ % natürlich: glasartige Überzüge in Poren, mit würfeligen Rissen, Würfel, Oktaeder synth.: (100 000 t/a) meist mit M=5-6, d.h. Al-arm, da Einsatz als Katalysator


LA-AFP 2022 Zeolithe - Siedende Steine 25.02.2022 25 / 55

Würfelzeolithe II: lta als CBU

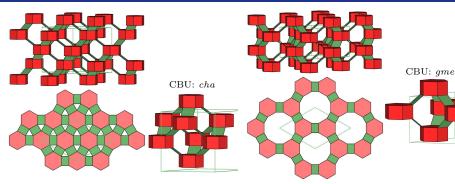
= LTA ('anti')


Verknüpfung über d6r

Zeolith ZK-5

▶ zwei identische Teilgitter

Verknüpfung über d8r

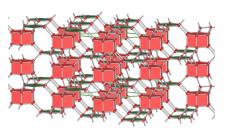


Zeolith RHO

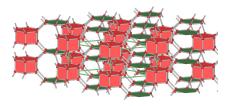
zwei identische Teilgitter

LA-AFP 2022 Zeolithe - Siedende Steine 25.02.2022 26 / 55

'Würfel'zeolithe III: d6r als SBU: Chabazit (CHA,7) und Gmelinit (GME, 11)


- ► Chabazit (CHA, 7) Struktur
 - ▶ pseudo-rhomboedrisch $R\bar{3}m$, a=9.4 Å, $\alpha=94^{\circ}$
 - ▶ | :ABC: |-Stapelung von d6r
 - ▶ Ringe: 4, 6, 8
 - ► CBU: cha (Chabasit-Käfige)
 - \triangleright $\emptyset_{\rm K} = 737 \; {\rm pm} \; ({\rm grosse} \; {\rm K\"{a}fige})$
 - $\triangleright \varnothing_{\rm F} = 372 \; {\rm pm} \; (! \; {\rm kleine \; Kan\"{a}le})$

- ► Gmelinit (GME, 11) Struktur
 - ▶ $P6_3/mmc$, $13 \times 13 \times 10$ Å
 - ightharpoonup | :AB: |-Stapelung von d6r
 - ▶ Ringe: 4, 6, 8, 12
 - ► CBU: gme (Gmelinit-Käfige)
 - ightharpoonup ØK = 776 pm (grosse Käfige)


 - ► V_{frei} = 17.3 %

LA-AFP 2022 Zeolithe - Siedende Steine 25.02.2022

'Würfel'zeolithe III: d6r und 6r als SBU: Erionit und Offretit

- ► Erionit (ERI) Struktur
 - ▶ hexagonal, $P6_3/mmc$, $13\times13\times15$ Å
 - \triangleright [AA]-Stapelung von d6r, dazwischen [BC] von 6r
 - ▶ Ringe 4, 6, 8
 - $\triangleright \varnothing_{\rm K} = 704 \text{ pm (grosse Käfige)}$
 - $\triangleright \varnothing_{\rm F} = 342 \text{ pm (sehr kleine Kanäle)}$
- ▶ Kristalle: beide kleine hexagonale Säulchen ↓

- ► Offretit (OFF) Struktur
 - \triangleright hexagonal, $P\bar{6}m2$, $13\times13\times7.6$ Å
 - \triangleright [B]-Stapelung der 6r
 - \triangleright sehr grosse Kanäle entlang c in Position [C]
 - $\triangleright \varnothing_{\rm K} = 700 \text{ pm (analog ERI)}$
 - $\triangleright \varnothing_{\rm F} = 661 \text{ pm (große Kanäle)}$
 - $V_{\text{frej}} = 15.1 \%$

LA-AFP 2022

 $\label{eq:minimum} \mbox{Mini-Kriställchen von Offretit (Säulen), aufgewachsen auf } \mbox{Überzügen von Faujasit (Limberg/Kaiserstuhl, Bildbreite nur ca. 2 mm)}$

 LA-AFP 2022
 Zeolithe - Stedende Steine
 25.02.2022
 29 / 55

- Einleitung
- 2 Kristallstrukturen

Strukturprinzipien, Nomenklatur, Kanalsysteme

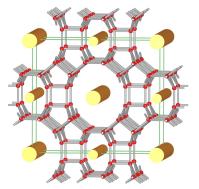
Natürliche Zeolithe

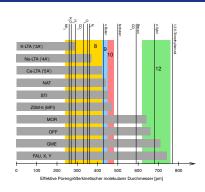
Würfelzeolithe (inkl. Chabazit etc.)

Pentasile (inkl. Mordenit)

- 3 Synthese und Modifizierung
- Verwendung
 - I. Ionenaustauscher
 - II. Adsorptions/Trockenmittel
 - III. (Molekular-)Siebe
 - IV. saure Katalysatoren
 - V. Redox-Katalysatoren
- 5 Zusammenfassung

LA-AFP 2022

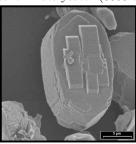

6 Literatur



25.02.2022

30 / 55

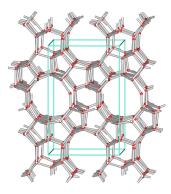
Pentasile I: Mordenit (MOR, 10)

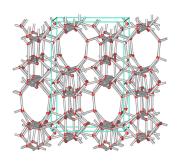


- ightharpoonup Na₈[Al₈Si₄₀O₉₆]·24H₂O (M=5)
- ► Struktur
 - ▶ orthorhombisch, Cmcm, $18 \times 20 \times 7.5 \text{ Å}$
 - ▶ 1D Kanalsystem; Ringe: 4, 5(!); 8 und 12, beide || [001]
 - ▶ $\varnothing_{\rm F} = 645 \text{ pm} \mid\mid c \text{ (weitporig, 12-Ringe)}$
 - ► CBU: mor
- ▶ natürlich: Ptilolith
- ▶ !! mittelporige mit ca. 500 -600 pm effektiver Porengröße fehlen !!

LA-AFP 2022 Zeolithe - Siedende Steine 25.02.2022 31 / 55

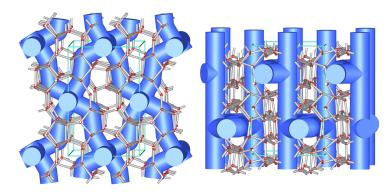
Pentasile II: ZSM-5 (MFI)


- ▶ seit 1972 (Mobil Oil, heute Teil von ExxonMobil)
- \blacktriangleright wich tiger synthetischer Zeolith-Katalysator (3000 t/a)



LA-AFP 2022 Zeolithe - Siedende Steine 25.02.2022 32 / 55

Pentasile II: ZSM-5 (MFI)


- ▶ seit 1972 (Mobil Oil, heute Teil von ExxonMobil)
- ▶ wichtiger synthetischer Zeolith-Katalysator (3000 t/a)
- ▶ Struktur: 5-Ringe als SBUs

Pentasile II: ZSM-5 (MFI)

- ▶ seit 1972 (Mobil Oil, heute Teil von ExxonMobil)
- wichtiger synthetischer Zeolith-Katalysator (3000 t/a)
 Struktur: 5-Ringe als SBUs

- ▶ lineare + Zick-Zack-Kanäle, 10-Ringe, $\varnothing_F = 446\text{-}470 \text{ pm} \mapsto \text{mittelporig}$
- ▶ Al-frei: Silicalit (\mapsto eine weitere kristalline SiO₂-Modifikation)

LA-AFP 2022 Zeolithe - Siedende Steine 25.02.2022 33 / 55

- Einleitung
- Kristallstrukturen

Strukturprinzipien, Nomenklatur, Kanalsysteme

Natürliche Zeolithe

Würfelzeolithe (inkl. Chabazit etc.)

Pentasile (inkl. Mordenit)

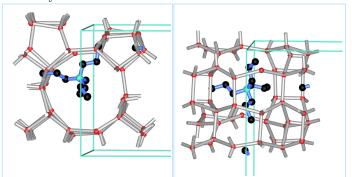
3 Synthese und Modifizierung

- Verwendung
 - I. Ionenaustauscher
 - II. Adsorptions/Trockenmittel
 - III. (Molekular-)Siebe
 - IV. saure Katalysatoren
 - V. Redox-Katalysatorer
- Zusammenfassung
- 6 Literatur

LA-AFP 2022 Zeolithe - Siedende Steine 25.02.2022 34 / 55

Synthese I

- ► Edukte: Silicate (Quarz, Silicagel) und Aluminate (Tonerde), in Natronlauge gelöst
- ggf. Template für bestimmte Kanalsysteme
- z.B. Einbau von Alkylaminen (Tetrapropylammonium-Kation) bei ZSM-5-Synthese:

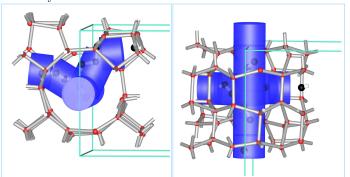

$$\begin{array}{c} \text{CH}_3 \\ \text{CH}_2 \\ \text{CH}_3 \\ \text{CH}_2 \\ \text{CH}_2 \\ \text{CH}_3 \\ \text{CH}_2 \\ \text{CH}_3 \\$$

ggf. Entfernen der organischen Template durch Ausbrennen \mapsto H-Form

LA-AFP 2022

Synthese I

- ▶ Edukte: Silicate (Quarz, Silicagel) + Aluminate (Tonerde), in Natronlauge gelöst
- ▶ ggf. Template für bestimmte Kanalsysteme
- ▶ z.B. Einbau von Alkylaminen (Tetrapropylammonium-Kation) bei ZSM-5-Synthese:



 \blacktriangleright ggf. Entfernen der organischen Template durch Ausbrennen \mapsto H-Form

LA-AFP 2022 Zeolithe - Stedende Steine 25.02.2022 36 / 55

Synthese I

- ▶ Edukte: Silicate (Quarz, Silicagel) + Aluminate (Tonerde), in Natronlauge gelöst
- ▶ ggf. Template für bestimmte Kanalsysteme
- \blacktriangleright z.B. Einbau von Alkylaminen (Tetrapropylammonium-Kation) bei ZSM-5-Synthese:

 \blacktriangleright ggf. Entfernen der organischen Template durch Ausbrennen \mapsto H-Form

LA-AFP 2022 Zeolithe - Siedende Steine 25.02.2022 36 / 55

Synthese II

▶ hydrothermale Synthesen: 50 - 300 °C (unter Druck, in Autoklaven)

Labor-Autoklav

technisch: Druck-Rührkessel
(Batch-Betrieb)

LA-AFP 2022 Zeolithe - Siedende Steine 25.02.2022 37 / 55

Modifizierung

- ► Austreiben von H₂O (sog. 'Aktivierung') bei 300 bis 450 °C
- Substitution der Kationen
 - \blacksquare Modifizierung der Kanalabmessungen z.B. Kanäle im LTA mit K⁺ (3 Å) < Na⁺ (4 Å) < Ca²⁺ (5 Å)
 - Einbringen katalytisch aktiver Metalle z.B. Austausch mit Pt²⁺, Reduktion zu Pt⁰
- ▶ Herstellung der sauren, sog. H-Form
 - ▶ Behandlung mit Mineralsäuren (bei Säure-stabilen Zeolithen)
 - \blacktriangleright alternativ: $\mathrm{NH_4}^+$ -Einbau und anschliessendem Ausbrennen von $\mathrm{NH_3}$
 - ▶ direktes Produkt bei organischen Templaten nach Ausbrennen der Organik
- \blacktriangleright 'Dealumininierung' \mapsto 'ultra-stable' (US)-Zeolithe für die Katalyse
 - verbesserte thermische Stabilität
 - geänderte Acidität

LA-AFP 2022

25 02 2022

38 / 55

- Einleitung
- Kristallstrukturen

Natürliche Zeolithe

Würfelzeolithe (inkl. Chabazit etc.)

Pentasile (inkl. Mordenit)

- 3 Synthese und Modifizierung
- 4 Verwendung
 - I. Ionenaustauscher
 - II. Adsorptions/Trockenmittel
 - III. (Molekular-)Siebe
 - IV. saure Katalysatoren
 - V. Redox-Katalysatoren
- Zusammenfassung
- 6 Literatur

LA-AFP 2022 Zeolithe - Siedende Steine 25.02.2022 39 / 55

- Einleitung
- 2 Kristallstrukturen

Natürliche Zeolithe

Würfelzeolithe (inkl. Chabazit etc.)

Pentasile (inkl. Mordenit)

- 3 Synthese und Modifizierung
- 4 Verwendung

I. Ionenaustauscher

II. Adsorptions/Trockenmittel

III. (Molekular-)Siebe

IV. saure Katalysatoren

V. Redox-Katalysatorer

- 5 Zusammenfassung
- 6 Literatur

LA-AFP 2022 Zeolithe - Siedende Steine 25.02.2022 40 / 55

Verwendung I: Zeolithe als Ionenaustauscher

- ▶ Prinzip:
 - ▶ Austausch von Na⁺-Ionen gegen andere Kationen
 - ► Austauschkapazität steigt mit Al-Gehalt (kleiner Modul günstig)
 - ggf. Regeneration durch Behandeln mit Kochsalz-Lösung
- ► Beispiele:
 - ightharpoonup Zeolith A in Wasch- und Reinigungsmitteln (LTA, Permutite, Sasil) M=2

- Austausch von Na⁺ gegen Ca²⁺ und/oder Mg²⁺ (Wasserenthärtung)
- Ersatz umweltschädlicher Phosphate
- ▶ Reinigung radioaktiver Abwässer
 - Immobilisierung radioaktiver Ionen z.B. $^{137}_{55}$ Cs⁺ oder $^{90}_{38}$ Sr²⁺

LA-AFP 2022 Zeolithe - Stedende Steine 25.02.2022 41 / 55

- Einleitung
- ② Kristallstrukturen

Natürliche Zeolithe

Würfelzeolithe (inkl. Chabazit etc.)

Pentasile (inkl. Mordenit)

- 3 Synthese und Modifizierung
- 4 Verwendung
 - I. Ionenaustauscher
 - II. Adsorptions/Trockenmittel

III. (Molekular-)Siebe

IV. saure Katalysatoren

V. Redox-Katalysatoren

- 5 Zusammenfassung
- 6 Literatur

LA-AFP 2022 Zeolithe - Siedende Steine 25.02.2022 42 / 55

Verwendung II: Zeolithe als Adsorptionsmittel/Trockenmittel

- ► Prinzip:
 - entwässerte Zeolithe
 - ightharpoonup Adsorption kleiner Moleküle ($\mathrm{H}_2\mathrm{O},\,\mathrm{CO}_2$) auch bei niedrigen Partialdrucken
- Beispiele:
 - ▶ Trocknung bzw. Entfernung von CO₂ und Schwefel-Verbindungen aus Erdgas/Synthesegas
 - ► Trocknung von Lösungsmitteln (LTA-Molsiebe 3 Å, 4 Å, 5 Å)
 - ► Trockenmittel in Doppelfenstern
 - Zusatz in Zement, Asphalt oder Porzellan (zur Steuerung des Aushärte-Verhaltens) (Natrolith, LTA)
 - Füllmittel für Papier- und Kunststoff
 - Verbesserung der Rieselfähigkeit div. Produkte
 - ▶ Abtrennung unerwünschter Gasbestandteile (Landwirtschaft, Großküchen)
 - kosmetische und pharmazeutische Formulierungen
 - ▶ Wärmespeicher

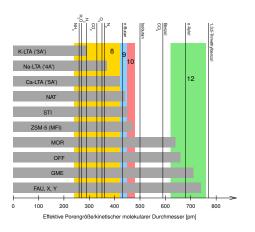
43 / 55 LA-AFP 2022 25 02 2022

- Einleitung
- 2 Kristallstrukturen

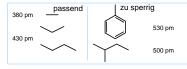
Natürliche Zeolithe

Würfelzeolithe (inkl. Chabazit etc.)

Pentasile (inkl. Mordenit)


- 3 Synthese und Modifizierung
- 4 Verwendung
 - I. Ionenaustauscher
 - II. Adsorptions/Trockenmittel
 - III. (Molekular-)Siebe
 - IV. saure Katalysatoren
 - V. Redox-Katalysatoren
- 5 Zusammenfassung
- 6 Literatur

LA-AFP 2022 Zeolithe - Siedende Steine 25.02.2022 44 / 55


Verwendung III: Zeolithe als (Molekular-)Siebe

- ▶ Prinzip:
 - ► Trennung von Molekülen nach Größe/Gestalt/(Polarität)

► Beispiele:

► Trennung verzweigter/unverzweigten Alkanen oder Aromaten (Ca-LTA), praktisch unabhängig von der Kettenlänge

- ► Sauerstoffanreicherung in Luft
- ► Luftzerlegung (PSA) (N₂-Adsorption an Ca-LTA)
- ► Trennungen CO/H₂, NH₃/Luft, NH₃/CH₄, Acetylen/Butadien, etc.

4 D > 4 A > 4 B > 4 B > 4 B > 9 Q Q

LA-AFP 2022 Zeolithe - Siedende Steine 25.02.2022 45 / 55

- Einleitung
- Kristallstrukturen

Natürliche Zeolithe

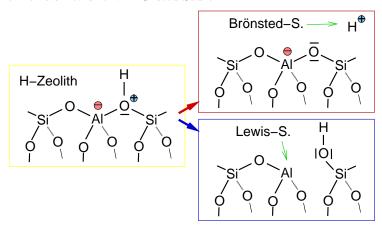
Würfelzeolithe (inkl. Chabazit etc.)

Pentasile (inkl. Mordenit)

- 3 Synthese und Modifizierung
- 4 Verwendung
 - I. Ionenaustauscher
 - II. Adsorptions/Trockenmittel
 - III. (Molekular-)Siebe
 - IV. saure Katalysatoren
 - V. Redox-Katalysatoren
- 5 Zusammenfassung

LA-AFP 2022

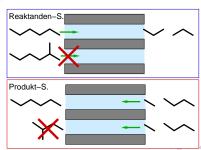
6 Literatur



25.02.2022

46 / 55

Verwendung IV: Zeolithe als saure Katalysatoren


▶ H-Formen als Lewis- bzw. Brønsted-Säuren:

LA-AFP 2022 Zeolithe – Siedende Steine 25.02.2022 47 / 55

IV: saure Katalysatoren

- ▶ Verwendung für
 - ► Isomerisierungen
 - ► Cracken
 - ▶ Hydrocrackung
 - ▶ Alkylierung von Aromaten
 - ▶ Dehydatisierung ...
- ▶ Vorteile gegenüber Mineralsäuren (z.B. Schwefelsäure)
 - einfache Abtrennung (heterogene Katalysatoren)
 - ▶ Regeneration möglich
 - ▶ keine Korrosionsprobleme
 - ► Formselektivität:

48 / 55

IV: saure Katalysatoren

Beispiele:

► Friedl-Crafts-Acylierung und -Alkylierung: H-ZSM-5

- Katalytisches Cracken (FCC: Fluid Catalytic Cracking): 'Ultra Stable' Y (USY)
- Dewaxing (Entfernung/Abbau langkettiger Paraffine aus Erdölfraktionen): ZSM-5

LA-AFP 2022 25 02 2022 49 / 55

- Einleitung
- Kristallstrukturen

Natürliche Zeolithe

Würfelzeolithe (inkl. Chabazit etc.)

Pentasile (inkl. Mordenit

- 3 Synthese und Modifizierung
- 4 Verwendung
 - I. Ionenaustauscher
 - II. Adsorptions/Trockenmittel
 - III. (Molekular-)Siebe
 - IV. saure Katalysatoren
 - V. Redox-Katalysatoren
- Zusammenfassung
- 6 Literatur

LA-AFP 2022 Zeolithe - Siedende Steine 25.02.2022 50 / 55

V. Redox-Katalysatoren

Übergangsmetallkatalyse

- ► Eintausch von Pd/Pt²+-Salzen, anschliessend Reduktion
- ▶ Pd/Pt-Partikel aus 5-10 Pt-Atomen in den Käfigen
- ightharpoonup sehr große Oberflächen \mapsto extrem aktive Redox-Kats
- z.B: Isomerisierung von Alkanen (Pt-Mordenit: Pt-MOR)

◆□ > ◆□ > ◆豆 > ◆豆 > 豆 のQ@

- Einleitung
- Kristallstrukturen

Natürliche Zeolithe

Würfelzeolithe (inkl. Chabazit etc.)

Pentasile (inkl. Mordenit)

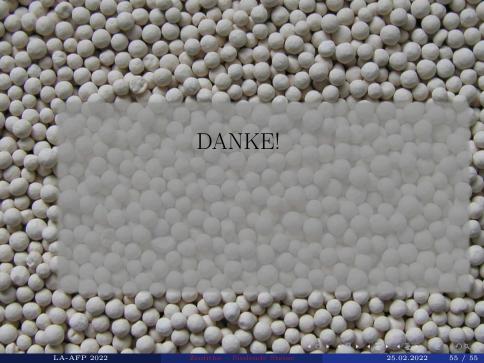
- 3 Synthese und Modifizierung
- Verwendung
 - I. Ionenaustauscher
 - II. Adsorptions/Trockenmittel
 - III. (Molekular-)Siebe
 - IV. saure Katalysatoren
 - V. Redox-Katalysatoren
- Susammenfassung
- 6 Literatur

LA-AFP 2022 Zeolithe – Siedende Steine 25.02.2022 52 / 55

Zusammenfassung

- ▶ Zeo-lithe = Siedende Steine
- ► Gerüst-Alumosilicate
- \blacktriangleright allgemeine Formel: $A_{x/n}^{n+}[\mathrm{Al}_n\mathrm{Si}_m\mathrm{O}_{2(n+m)}]^{n-}\!\cdot\!y\mathrm{H}_2\mathrm{O}$
- ▶ natürlich und synthetisch
- ▶ Strukturen: Gerüststrukturen mit Kanalsystemen; für Gäste zugänglich
- ▶ Synthese: gezielte Steuerung der Porenabmessungen durch Template
- ▶ Verwendung:
 - ► Ionenaustauscher
 - ► Trockenmittel, Molsiebe
 - ► Heterogen-Katalysatoren (Säure- oder Redox-Katalyse)

53 / 55


LA-AFP 2022 Zeolithe - Siedende Steine 25.02.2022

Literatur

- ▶ M. Okrusch, S. Matthes, Mineralogie, Springer (2004).
- extraLapis Nr. 33: Zeolithe: Mineralien zugleich nützlich und wunderschön, Weise-Verlag München (2007).
- ▶ F. Liebau: Structural Chemistry of Silicates, Springer (1985).
- ▶ L. Puppe, Chemie in unserer Zeit 4, 117 (1986).
- ▶ Ullmann: Encyclopedia of Industrial Chemistry, Wiley-VCH Weinheim.
- ▶ Web-Seite zur Vorlesung 'Silicatchemie': http://ruby.chemie.uni-freiburg.de/Vorlesung/silicate_0.html
- Datenbank der Zeolith-Strukturen: http://www.iza-structure.org/databases/
- ▶ PDF dieses Seminars http://ruby.chemie.uni-freiburg.de/Vorlesung/Seminare/zeolithe_la_fp.pdf

LA-AFP 2022 25 02 2022 54 / 55

