Rechenübung II

LA-AGP 2018

- 1. Der pH-Wert einer gesättigten Lösung von Magnesiumhydroxid beträgt 10.2. Berechnen Sie das Löslichkeitsprodukt von Magnesiumhydroxid.
- 2. Im Kationentrennungsgang wird Urotropin als Fällungsmittel verwendet. Begründen Sie, weshalb im Trennungsgang bei pH 5 Fe³+ als Hydroxid ausfällt, während Mg^{2+} unter gleichen Bedingungen (typische Metallionenkonzentratin in der Lösung: $10^{-2}\frac{\text{mol}}{1}$) in Lösung bleibt. $pK_L(Fe(OH)_3) = 38$, $pK_L(Mg(OH)_2) = 11$.
- 3. Das Löslichkeitsprodukt von Silberchlorid beträgt $1.8 \cdot 10^{-10} \, \frac{\text{mol}^2}{\text{l}^2}$. Quecksilber(I)-Chlorid hat dagegen mit $1.4 \cdot 10^{-18} \, \frac{\text{mol}^3}{\text{l}^3}$ ein deutlich kleineres Löslichkeitsprodukt. Welches der beiden Chloride fällt zuerst aus, wenn zu einer 0.02-molaren Lösung beider Ionen langsam HCl zugetropft wird?
- 4. Das Hydroxid, das in der Urotropin-Gruppe zuletzt ausfällt, weist einen pK_L-Wert von 31 auf. Bei falscher pH-Einstellung würden aus der folgenden Gruppe auch Hydroxid-Niederschläge entstehen. Der pK_L-Wert für das in dieser Gruppe schwerlöslichste Hydroxid ist 13. Berechnen Sie die pH-Werte, bei denen die beiden Hydroxide jeweils ausfallen.
- 5. (a) Formulieren Sie stöchiometrisch exakt das pH-abhängige Chromat-Dichromat-Gleichgewicht und diskutieren Sie die Gleichgewichtslage. Wie lässt sie sich erkennen?
 - (b) Die Gleichgewichtskonstante beträgt K = $10^{-13} \frac{\text{mol}^3}{\text{l}^3}$. Überprüfen Sie anhand ihrer Einheit die Definition (Reaktionsrichtung).
 - (c) Die Abtrennung von Ba²⁺ und Sr²⁺ in der Ammoniumcarbonat-Gruppe beruht auf der unterschiedlichen Löslichkeit der Chromate ($K_L(BaCrO_4)$) = $10^{-10\frac{mol^2}{l^2}}$, $K_L(SrCrO_4)$ = $10^{-4\frac{mol^2}{l^2}}$). Berechnen Sie den pH-Wert, bei dem das Kation des schwerer löslichen Salzes vollständig ($[M^{2+}] < 10^{-5\frac{mol}{l}}$) gefällt ist. (Die Fällung erfolgt mit $K_2Cr_2O_7$ -Lösung im Überschuss, so dass gelten soll: $[Cr_2O_7^{2-}] = 10^{-1\frac{mol}{l}} = konst.$)
 - (d) Welchen pH-Wert muss man einstellen, um auch das leichter lösliche Ion analog vollständig zu fällen?
- 6. Die Fällung von Sulfiden wird zur Trennung der Kationen im Trennungsgang verwendet.
 - (a) Wie hängt qualitativ und quantitativ (chemische und mathematische Gleichungen!) die Sulfidionenkonzentration mit dem pH-Wert zusammen?
 - (b) Cobalt(II)-Sulfid und Thallium(I)-Sulfid haben gleiche Löslichkeitsprodukte. Die Fällung von CoS aus einer gesättigten H₂S-Lösung kann bei einem pH-Wert von 4 als ausreichend angesehen werden (Rest-Metallionen-Konzentration 10⁻⁹ mol / I). Welcher pH-Wert ist erforderlich, damit auch Thalliumsulfid nach den selben Kriterien (d.h. gleiche Rest-Metallionen-Konzentration) als vollständig gefällt gelten kann?