Vorlesung Anorganische Chemie

Prof. Ingo Krossing WS 2007/08 B.Sc. Chemie

Lernziele Block 6

- · Entropie und Gibbs Enthalpie
 - Gibbs-Helmholtz-Gleichung
 - Absolute Entropien
 - Gibbs Standardbildungsenthalpien
- Kinetik
 - Aktivierungsenergie
 - Reaktion 1. und 2. Ordnung
 - Reaktionsgeschwindigkeit
- · Chemisches Gleichgewicht
 - Massenwirkungsgesetz
 - Gleichgewichtskonstante

Entropie: Das Streben nach Unordnung

- Für die Betrachtung, ob eine Reaktion freiwillig abläuft ist nicht nur die Enthalpie, sondern auch Entropie entscheidend.
- Entropie 5 ist ein Maß für die Unordung. Insgesamt strebt die Entropie (= Unordnung) im Weltall einem Maximum entgegen.

Gibbs-Helmholtz-Gleichung

 Ob eine Reaktion – spätestens nach einer Aktivierung - ablaufen kann, folgt aus der Gibbs Enthalpie G der Reaktion:

$$\Delta G = \Delta H - T \cdot \Delta S$$

G = Gibbs Enthalpie

H = Enthalpie

T= Temperatur

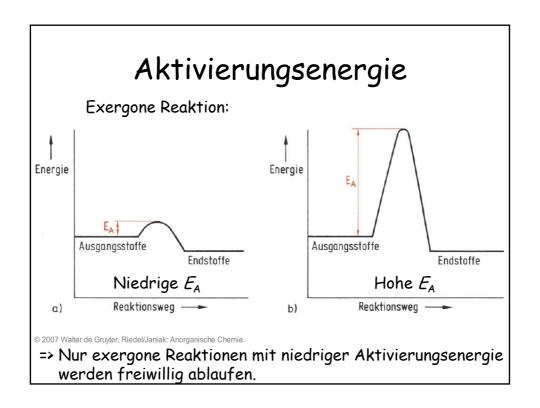
5 = Entropie

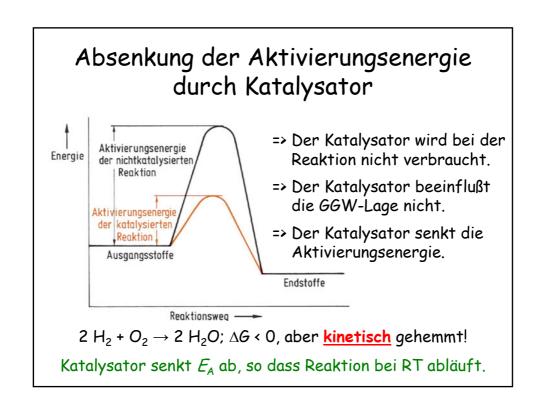
• Die Beiträge ΔG , ΔH und ΔS werden gemäß

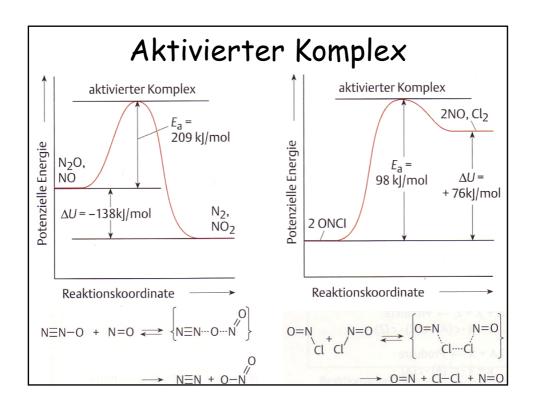
 $\Delta X = \Sigma(Produkte) - \Sigma(Edukte)$

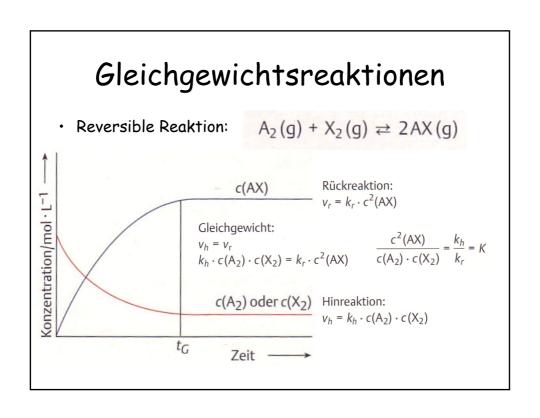
ermittelt.

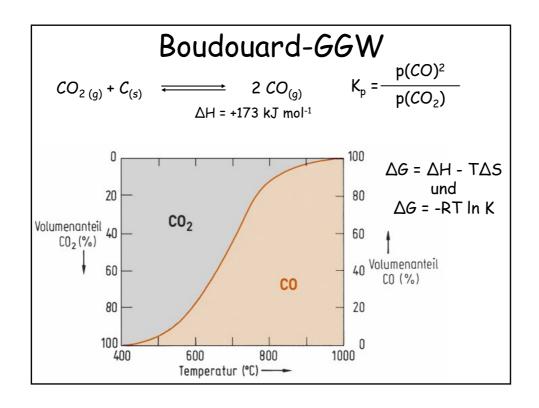
Gibbs-Helmholtz-Gleichung

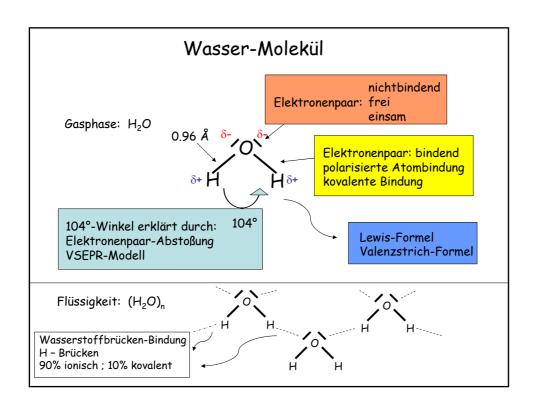

- Reaktionen, die **freiwillig** ablaufen, haben ein negatives Vorzeichen von $\Delta_r G$.
 - $\Rightarrow \Delta_r G < 0$ Reaktion läuft ab (=> ist exergon).
- Reaktionen, die **nicht freiwillig** ablaufen, haben ein positives Vorzeichen von $\Delta_r G$.
 - $\Rightarrow \Delta_r G > 0$ Reaktion läuft nicht ab (=> ist endergon).

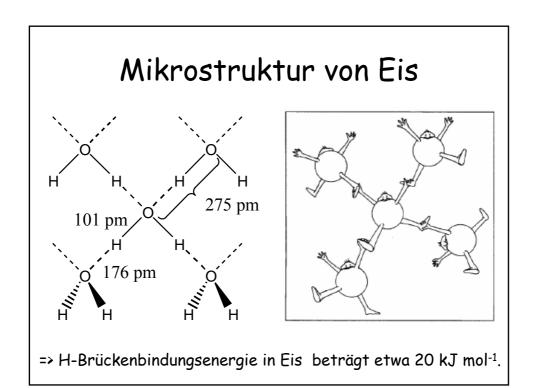

Auflösen von Salzen

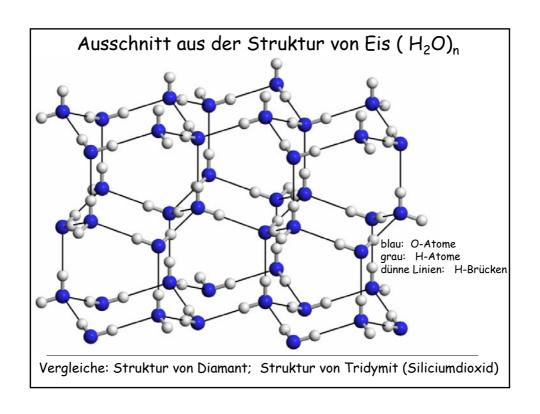

$$MX_{n(s)} \longrightarrow M^{n+}_{(aq)} + n X^{-}_{(aq)}$$


Salz	$\Delta_{ m r} \mathcal{H}$ [kJ mol $^{-1}$]	$T\Delta_{r}\mathcal{S}$ [kJ mol ⁻¹]	∆ _r <i>G</i> [kJ mol⁻¹]
NaCl	+3.6	+12.8	-9.2
AgF	-20.3	-5.8	-14.5
NH ₄ Cl	+15.1	+21.8	-6.7
MgCl ₂	-155.0	-29.0	-126.0

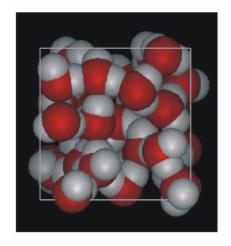

=> Erst die Produktion von Entropie macht die Auflösung von NaCl und [NH4]Cl möglich...!

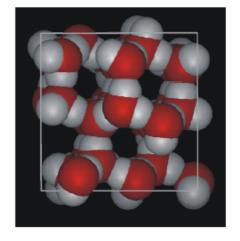



Säuren und Basen

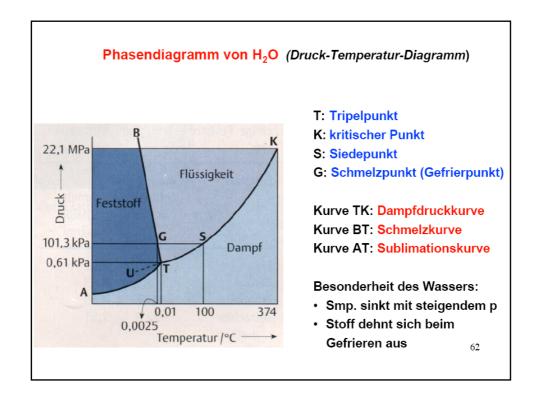

Verschiedene Konzepte

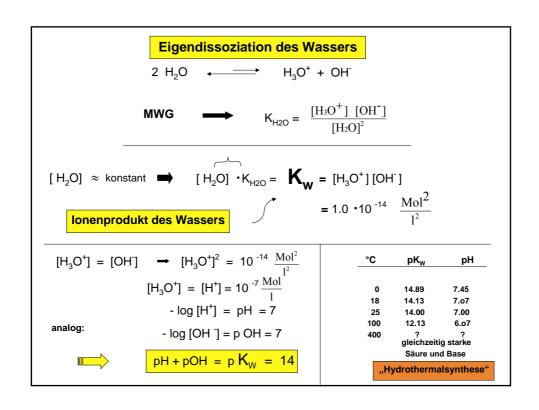
Lernziele Block 6


- · Wasser als Lösungsmittel
 - Struktur und Eigenschaften
- · Säuren und Basen
 - Arrhenius
 - Brønsted
 - Lewis
- · Säure-Base-Gleichgewichte
 - Autoprotolyse
 - Schwache Elektrolyte
 - Puffer
 - Indikatoren



Dichteanomalie von Wasser: Wasser erreicht bei 4°C ein Dichtemaximum. => Eis schwimmt auf Wasser.


Flüssiges Wasser Dichte: 1.0 **Dichter gepackt**



Hexagonales Eis Dichte: 0.92 Enthält Lücken

Hexagonale Struktur von Eis findet sich in Eiskristallen

Zur hohen elektrischen Leitfähigkeit von saurem Wasser

Rascher Wechsel von kovalenten Bindungen und von Wasserstoffbrücken-Bindungen (punktiert)

Die postive Ladung wird zur negativen Elektrode hin angezogen (a-c)

Säuren und Basen

Arrhenius (1886):

Säure = Protonendonator

Base = Hydroxidionen-Donator

Brönsted (1923) / Lowry (1923)

Säure = Protonen-Donator Base = Protonen-Akzeptor

$$HB = B^{-} + H^{+}$$

Säure Base Proton

korrespondierendes (konjugiertes) Säure-Base-Paar

Stets wechselwirken zwei Säure-Base-Paare:

$$HAc + H_2O = H_3O^{+} + Ac^{-}$$

Säure 1 Base 2 Säure 2 Base 1

$$NH_3$$
 + H_2O = NH_4^+ + OH_2^-
Base 1 Säure 2 Säure 1 Base 2

einprotonige Säuren		mehrprot	mehrprotonige Säuren	
stark	_			
HCl	Salzsäure	H ₂ SO ₄	Schwefelsäure	
HBr	Bromwasserstoffsäure		(nur die erste Dissoziation	
HI HClO ₃	lodwasserstoffsäure Chlorsäure		ist stark)	
HClO ₃	Perchlorsäure		ist stark)	
HNO ₃	Salpetersäure			
schwach				
HOCI*	Hypochlorige Säure	H ₂ S	Schwefelwasser- stoffsäure	
HClO ₂ *	Chlorige Säure	H ₂ SO ₃ *	Schweflige Säure	
HNO ₂ *	Salpetrige Säure	H_2CO_3	Kohlensäure	
CH ₃ CO ₂ H	Essigsäure	H_3PO_4	•	
H_3BO_3	Borsäure * *		(mittelstark in der	
			ersten Dissoziation	

		"Ampholyte"
"Am	photere" Stoff	e können sowohl als Säure als auch als Base reagieren
	Ampholyt	Säure - Base - Paar
	H₂O	H₃O⁺ H₂O H₂O OH⁻
Anion- Säuren	H50 ₄	H ₂ SO ₄ HSO ₄ - HSO ₄ SO ₄ ² -
	HPO ₄ ²⁻	H ₂ PO ₄ ⁻ HPO ₄ ²⁻ HPO ₄ ²⁻ PO ₄ ³⁻
	Neutralisatio	on: $H_3O^+ + OH^- = 2 H_2O$

Stärke von Brønsted-Säuren HA

$$HA + H_2O \xrightarrow{K_{HA}} H_3O^+ + A^-$$

$$HA + H_2O \xrightarrow{K_{HA}} H_3O^+ + A^-$$

$$H_3O^+ + A^-$$

$$H_3O^$$

Klassifizierung von Brønsted-Säuren

Die Stärke von Säuren: Klassifizierung nach dem pK_s -Wert.

pK_s	Säurestärke	pK_s	Säurestärke
< -3.5	überaus starke Säuren	3.5 < <i>pK_s</i> < 10.5	schwache Säuren
-3.5 < <i>pK_s</i> < -1	sehr starke Säuren	10.5 < <i>pK_s</i> < 17.5	sehr schwache Säuren
-1 < <i>pK_s</i> < +1.5	starke Säuren	17.5 < <i>pK_s</i>	überaus schwache Säuren
1.5 < <i>pK_s</i> < 3.5	mittelstarke Säuren		

Protochemisches Potential

Säure	pK _s	Säure	pK _s
HCIO ₄	-10	HF	+3.2
HCl	-7	HOAc	+4.75
H₂SO₄	-3	[Al(OH ₂) ₆] ³⁺	+5.0
$H_4PO_4^+ = P(OH)_4^+$	-3	CO ₂ + H ₂ O	+6.35
HCIO ₃	-2.7	$[Fe(OH_2)_6]^{2+}$	+6.7
HNO ₃	-1.4	H₂S	+7.0
H₃O⁺	0	HCIO	+7.5
H_2SO_3 (= $H_2O + SO_2$)	+1.9	$[Zn(OH_2)_6]^{2+}$	+9.0
HSO₄⁻	+2.0	H ₂ O	+15.7
H ₃ PO ₄	+2.1	NH ₃	+23
[Fe(OH ₂) ₆] ³⁺	+2.5	H ₂	+39

 $\Delta G = -nRT\Delta ln(K_s) = 5.23 \cdot \Delta pK_s$ [in kJ mol⁻¹]

Protochemisches Potential

z.B. für die Reaktion von NH₄+Cl- mit NaOH:

$$NH_4^+Cl^- + Na^+OH^- \rightarrow NH_3 + H_2O + NaCl$$

$$\Delta G = -nRT\Delta ln(K_s) = 5.23 \cdot \Delta p K_s [in kJ mol^{-1}]$$

$$\Rightarrow \Delta p K_s = 9.25 - 15.7 = -6.25$$

$$\Rightarrow \Delta_r G = 5.23 \cdot (-6.25) = -32.7 \text{ kJ mol}^{-1}$$

Bell'sche Regel

Sauerstoffsäuren: $(O=)_m E(-OH)_n$

$$pK_{s} = 8 - 5m$$

=> m = 0 $pK_s = 8$; m = 1 $pK_s = 3$ m = 2 $pK_s = -2$

m = 0	<i>pK_s</i> = ?	m = 1	<i>pK_s</i> = ?	m = 2	pK _s = ?
CIOH	7.5	HClO ₂	1.9	ClO ₂ (OH)	-2.7
Te(OH) ₆	7.7	IO(OH) ₅	1.6 / 8.3	50 ₂ (OH) ₂	-3.0 / 2.0
As(OH)₃	9.2	50(0H) ₂	1.8 / 7.2	SeO2(OH)2	-3.0 / 1.7
Si(OH) ₄	9.5	SeO(OH) ₂	2.6 / 8.3	NO ₂ (OH)	-1.4
		TeO(OH) ₂	2.5 / 7.7	<i>pK</i> _s -Wert der 2.	Stufe etwa 5
		NO(OH)	3.3	und der der 3. S	tufe etwa 10
		PO(OH)₃	2.2 / 7.2 /	12.3 Einheiten klei	ner als <i>pK</i> 1
		$AsO(OH)_3$	2.2 / 6.9 /	11.5	

Warum gilt die Bell'sche Regel...?

- · Proton immer an O gebunden
- Anzahl der mesomeren Grenzstrukturen für selbes m immer gleich, z.B. $\rm H_2SO_4$

=> m = 2, d.h. drei Grenzformen im Anion $[HSO_4]^{-1}$ über die die Ladung delokalisiert ist.

Säure	pK _s	Säure	pK _s
HCIO ₄	-10	HF	+3.2
HCI	-7	HOAc	+4.75
H ₂ SO ₄	-3	[Al(OH ₂) ₆] ³⁺	+5.0
$H_4PO_4^+ = P(OH)_4^+$	-3	CO ₂ + H ₂ O	+6.35
HClO₃	-2.7	[Fe(OH ₂) ₆] ²⁺	+6.7
HNO ₃	-1.4	H ₂ S	+7.0
H ₃ O⁺	0	HCIO	+7.5
H_2SO_3 (= $H_2O + SO_2$)	+1.9	$[Zn(OH_2)_6]^{2+}$	+9.0
H5O ₄ -	+2.0	H₂O	+15.7
H ₃ PO ₄	+2.1	NH ₃	+23
[Fe(OH ₂) ₆] ³⁺	+2.5	H ₂	+39

Frohes Fest und einen Guten Rutsch ins Neue Jahr...!

Viel Erfolg im EFK...!