
2. Elementare Metalle, Metallischer Zustand

2.1. Physikalische Eigenschaften: generelle Übersicht

Polarisationseffekte (statischer Response, Gleichgewicht)

$$\chi^{\rm YX} = \frac{\delta {
m Y}}{\delta {
m X}}$$

$X \Rightarrow$	Temperatur	elektrisches Feld	Magnetfeld	mechanische Spannung
ψ Y	T [K]	$E_{\rm i} [{ m V/m}]$	$H_{\rm i}~{ m [Vs/m^2]}$	$\sigma_{i,j} [N/m^2]$
Entropie	Wärmekapazität	elektrokalorischer Effekt	magnetokalorischer Effekt	
S [J/K]	$\chi^{ST} = c_p = \frac{\delta S}{\delta T} T$	$\chi_{\rm i}^{SE} = \frac{\delta S}{\delta E}$	$\chi_{\rm i}^{SH} = \frac{\delta S}{\delta H}$	$\chi_{i,j}^{S\sigma} = \frac{\delta S}{\delta \sigma}$
elektrische Polarisation	pyroelektrischer Effekt	elektrische Suszeptibilität	magnetoelektr. Efffekt	piezoelektrischer Effekt
$P_k [Asm^{-2}]$	$\chi_{\mathbf{k}}^{PT} = \frac{\delta \mathbf{P}}{\delta T}$	$\chi_{i,k}^{PE} = \frac{\delta P}{\delta E}$	$\chi_{i,k}^{PH} = \frac{\delta P}{\delta H}$	$\chi_{i,j,k}^{P\sigma} = \frac{\delta P}{\delta \sigma}$
				piezoelektrische Moduln
Magneti- sierung	pyromagnetischer Effekt	elektromagnetischer Effekt	magnetische Suszeptibi- lität	piezomagnetischer Effekt
$M_k [A/m]$	$\chi_{\mathbf{k}}^{MT} = \frac{\delta M}{\delta T}$	$\chi_{i,k}^{ME} = \frac{\delta M}{\delta E}$	$\chi_{i,k}^{MH} = \frac{\chi}{\mu} = \frac{\delta M}{\delta H}$	$\chi_{i,j,k}^{M\sigma} = \frac{\delta P}{\delta \sigma}$
				piezomagnetische Moduln
mechanische Deformation	thermische Ausdehnung	reziproker piezoelektr. Effekt (Elektrostriktion)	reziproker piezo- magnetischer Effekt	Spannungstensor
$\epsilon_{ m k,l}$	$\chi_{k,l}^{\epsilon T} = \alpha_{k,l} = \frac{\delta \epsilon}{\delta T}$	$\chi_{i,k,l}^{\epsilon E} = \frac{\delta \epsilon}{\delta E}$	$\chi_{i,k,l}^{\epsilon H} = \frac{\chi}{\mu} = \frac{\delta \epsilon}{\delta H}$	$\chi_{i,j,k,l}^{\epsilon\sigma} = \frac{\delta\epsilon}{\delta\sigma}$
(Dehnung, Scherung)	thermischer Verzerrungs- tensor	piezoelektrische Moduln	piezomagnetische Mo- duln	elastische/ Elastizitäts- moduln

Transporteffekte (dynamischer Response, Nicht-Gleichgewicht)

$$\underbrace{J_{Y}}_{\text{Fluß}} = -\underbrace{a^{YX}}_{\text{Transportkoeff. Gradient}} \underbrace{\nabla X}_{\text{Gradient}}$$

$\nabla X \Rightarrow$	Gradient					
Fluß \Downarrow J_Y	$\nabla T \left[\mathrm{K/m} \right]$	$\nabla p \; [\mathrm{kg/m^2s^2}]$	$\nabla N_{\rm v} \ [{ m m}^{-4}]$	$\nabla V(E)$ [V/m]		
Wärme Q	Wärmeleitung	mechanokalorischer Effekt	Diffusionswärme	Peltier-Effekt bzw.		
$[\mathrm{J/m^2s}]$	$\frac{\mathrm{d}Q}{\mathrm{d}t} = -\kappa \mathbf{A} \frac{\mathrm{d}T}{\mathrm{d}z}$			2. Benedicks-Effekt		
Masse m	thermomechanischer	Massetransport	Diffusionsdruck			
$[\mathrm{kg/m^2s}]$	Effekt	$\frac{\mathrm{d}m}{\mathrm{d}t} = \frac{\mathrm{const.}}{\eta} \frac{\mathrm{d}p}{\mathrm{d}z}$				
		$(\eta: Viskosität)$				
		Hagen-Poiseuille-Gesetz				
Teilchen-	Thermodiffusion	Druckdiffusion	Diffusion	Elektrophorese		
zahl ${\cal N}$			$\frac{\mathrm{d}N}{\mathrm{d}t} = -\mathrm{D}\frac{\mathrm{d}N}{\mathrm{d}z}$			
$[m^{-2}s^{-1}]$			(Diffusionskoeffizient)			
			1. Fick'sches Gesetz			
Ladung q	Seebeck-Effekt		Strömungsstrom	Elektrizitätsleitung		
$[A/m^2]$	1. Benedicks-Effekt			$\frac{\mathrm{d}q}{\mathrm{d}t} = -\sigma \mathbf{A} \frac{\mathrm{d}V}{\mathrm{d}z}$		
				(elektronische Leitfähigkeit)		
				Ohm'sches Gesetz		